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Abstract

We design a probabilistic algorithm for computing endomorphism rings of ordinary
elliptic curves defined over finite fields that we prove has a subexponential runtime in the
size of the base field, assuming solely the generalized Riemann hypothesis.

Additionally, we improve the asymptotic complexity of previously known, heuristic,
subexponential methods by describing a faster isogeny-computing routine.

1 Introduction
Endomorphism rings of ordinary elliptic curves over finite fields are central objects in

complex multiplication (CM) theory; as such, they appear in various computational number-
theoretic contexts. For instance, the CM method for generating curves with a prescribed
number of points relies on evaluating so-called Hilbert class polynomials, for which the state-
of-the-art algorithm of [19] requires an endomorphism-ring-computing subroutine. They are
also potentially relevant security parameters in certain cryptographic applications.

They were first studied by Kohel [13] who, assuming the generalized Riemann hypothesis
(GRH), gave a deterministic method for computing them in timeO (q 1/3+ε) where q is the
cardinality of the base field. Recently, a probabilistic algorithmwith subexponential complexity
in log q was obtained in [3] by relying on several additional assumptions; its runtime is

L(q )
�
3/2+o(1) where L(x ) = exp

�
log x log log x .

Here, we describe a variant of this method that computes endomorphism rings in proven
probabilistic subexponential time, assuming only the GRH.The core idea remains to exploit
complex multiplication theory to test orders using their ideal structure and evaluating corre-
sponding isogenies.

However, our method differs from that of [3] in several aspects. First, we use a more
direct, faster isogeny-computing routine which allows us to bring down the exponent in the
overall complexity. In addition, to select which orders are to be tested, we give a generic lattice-
ascending procedure; it is suited to work in general number fields which is a necessary step
to generalize the whole procedure to higher-dimensional abelian varieties (see [2, Chapter 8]
for details). Finally, to prove the complexity of the order-testing method, we adapt material
from Seysen [17] and proofs due to Hafner andMcCurley [10] to make use of a sharp bound
derived from the GRH by Jao, Miller, and Venkatesan [12, Corollary 1.3].
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All in all, on input an ordinary elliptic curve � defined over a finite field �q our main
algorithm returns the structure of its endomorphism ring End� in proven (assuming the
GRH) probabilistic time

L(q )1+o(1) + L(q )1/
�
2+o(1)

where the first term only accounts for factoring an integer less than 4q using the state-of-the-art
proven method of Lenstra and Pomerance [15]; in other words, apart from that factorization,
we adapted and proved under theGRHall parts of the heuristicmethod of [3] while improving
its asymptotic complexity.

We stress that although its runtime is probabilistic and depends on the GRH, the output
of our algorithm is unconditionally correct (it is a Las Vegas algorithm).

Section 2 fixes notations on endomorphism rings and orders. Section 3 then presents the
order-testing method using relations. Section 4 gives the direct and fast isogeny-computing
routine. Section 5 describes our lattice-ascending procedure and main algorithm. Section 6
proves that class groups are characterized by short relations. Section 7 finally shows how orders
are determined by their class groups.

2 Background
Let � be an ordinary elliptic curve over a finite field �q . The Frobenius endomorphismπ

acts on geometric points of � by raising their coordinates to the q th power; its characteristic
polynomial χπ(x ) is of the form x2 − t x + q and computing the integer t is equivalent
to finding the number of points on � , namely χπ(1), which can be done in deterministic
polynomial time in log q as Schoof showed in [16].

Deuring proved in [8] that�⊗End� ��(π). Since the number fieldK =�[x ]/(χπ(x ))
is isomorphic to�(π), by computing the trace t we have already determined the endomor-
phism ring up to fractions. Fromnowon, wemake this isomorphism implicit by settingπ = x .1

The number fieldK is called the CM field of � ; the implicit isomorphism maps End� to
an order inK so we have

�[π] ⊆ End� ⊆ �K
where�K is the ring of integers ofK . Conversely,Waterhouse proved in [21,Theorem4.2] that
all orders containing �[π] arise as endomorphism rings. The index [�K : �[π]] is essentially
the square part ofΔ = t 2 − 4q and measures how broad the search-range is: in the worst case,
it can be exponential (in log q ).

The orders of K containing �[π] form a finite lattice (in the set-theoretic sense) where
�K is the maximal order,�[π] the minimal one, and End� lies in between. Unfortunately it
might have exponentially many orders so we need to devise a better way of finding End� than
testing each in turn; this is the purpose of the lattice-ascending algorithm of Section 5 which
tests only polynomially many orders. For those orders � , we test whether � ⊆ End� with the
methodology of Section 3.

3 The CM approach
We now present the approach of [3] to testing whether � ⊆ End� , in a somewhat more

abstract flavor. For the theory of imaginary quadratic orders, we refer to [7].

It will be implicitly understood that we exclusively consider ideals of norm coprime toΔ,
so that their images in �[π] are unramified and invertible. Since every (invertible) ideal class

1The conjugate of x might equivalently be taken asπ; this choice just needs to be fixed.
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of each order containing�[π] has a representative of this type, this has no effect on our use
of class groups, which arises from the following result of CM theory (see [4, Chapter 8] for a
concise proof ).

Theorem 3.1. For any ideal a of End� , denote byφa the isogeny with kernel
�
α∈a kerα. The

class group cl(� ) acts faithfully and transitively on the set of isomorphism classes of elliptic curves
with endomorphism ring � by a : � �→φa(� ).

Intuitively, it means that the structure of the class group dictates that of the isogeny graph;
hence, by looking at the latter, we deduce things on the former and obtain information about
the endomorphism ring. This action is effective, as Proposition 4.4 will show. In this setting,
we formalize the notion of structure by the following concept.

Definition. We define relations as multisets of ideals of �[π]. We say that a relation R holds in
an order � (or that it is a relation of � ) if the product�a∈R a� is trivial in cl(� ); we say that it
holds in the isogeny graph if the composition of the isogeniesφaEnd� for a ∈ R fixes � .

The theorem implies that a relation holds in End� if and only if it holds in the isogeny
graph, which gives a way to tell the endomorphism ring apart from other orders (we will see
thatφaEnd� can be computed without knowing End� ).

To avoid testing all orders, we rely on this simple result from [7, Chapter 7]:

Lemma 3.2. If a relation holds in some order, it holds in all orders containing it.

Intuitively, as we ascend the lattice of orders, more and more relations hold, which also
translates into class groups getting smaller. This is why we chose �[π] to be the ring of our
ideals: via the morphism a �→ a� we can map ideals of �[π] to any order above in a way that
induces surjective morphisms of class groups.

To search for the endomorphism ring End� in the lattice, we will test whether orders �
lie below it by selecting relations of them and checking whether they hold in the isogeny graph.
Before we describe that procedure in detail, let us mention how to compute isogenies.

4 Computing the CM action
Tomake use ofTheorem 3.1, we need to work with isomorphism classes of elliptic curves;

for this, we rely on [7, Proposition 14.19] which states that two ordinary elliptic curves are
isomorphic if and only if their cardinalities and j -invariants are the same. Computing the
cardinality takes polynomial time, and since the j -invariant is a rational function in the coef-
ficients of aWeierstrass equation, it does not take longer to evaluate it. From now on, it will be
implicitly understood that we work with isomorphism classes via this representation.

To evaluate the actionφa(� ) of an ideal a, we combine classical tools as follows (each step
is explained in detail on the following page). Note that by factoring the ideal a, one can reduce
to the case where it is prime.

Algorithm 4.1.
Input: An elliptic curve �/�q with Frobenius polynomial χπ and a prime ideal a.

Output: The isogenous elliptic curveφa(� ).
1. Find a basis (Pi ) of the ℓ -torsion of � over �q ℓ−1 for ℓ = norm (a).
2. Write the matrix M of the Frobenius endomorphism on (Pi ).
3. Compute the eigenspaces of M ∈Mat2(�/ℓ�).
4. Determine which is the kernel of the isogenyφa.
5. Compute this isogeny.
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Step 5 computesφa from its kernel, whichVélu’s formulæ [20] do inO (ℓ ) curve operations
over �q ℓ−1 . Step 4 uses the following idea from the SEA algorithm proved in [9, Stage 3]:

Proposition 4.2. Let a be an ideal of � of prime norm ℓ ; write it as ℓ� + u(π)� where the
polynomial u is an irreducible factor of χπ mod ℓ . The kernel of the corresponding isogenyφa is
an eigenspace of the Frobenius endomorphism, and we have u = char(π|kerφa

).

Since the map a �→ a� preserves the norm ℓ and polynomial u of ideals a of �[π], the
order � need not be known to computeφa� , which we use for � = End� .

Step 3 is classical and takes quasi-linear time in log ℓ ; it outputs the �q -rational subgroups
of � [ℓ] isomorphic to �/ℓ�. Step 2 decomposesπ(Pi ) as

�
j∈{1,2}Mi j Pj for which a baby-

step giant-step approach requiresO (ℓ ) operations in �/�q ℓ−1 .
Finally, Step 1 uses the fact that points of rational subgroups of order ℓ are defined over

an extension of degree ℓ − 1; it selects random ℓ k -torsion points over this extension and lifts
one along the other to obtain independent ℓ -torsion points. This procedure originates from
[6, Theorem 1]; it does not only apply to elliptic curves, but we give a detailed algorithm
specialized to this setting below.

Algorithm 4.3.
Input: An elliptic curve �/�q with Frobenius polynomial χπ and a prime ℓ .

Output: A basis of the ℓ-torsion � [ℓ] of � over �q ℓ−1 .
a. Decompose #� (�q ℓ−1 ) as mℓ k where ℓ � m.
b. Let P andQ be m times random points of � (�q ℓ−1 );
c. Compute the order ℓ kP of P and ℓ kQ ofQ and assume kP ≥ kQ .
d. Precompute the table (i , i ℓ kP−1P ) for i ∈ �/ℓ�.
e. For j from kQ − 1 down to 1:
f. If ℓ j Q = i ℓ kP−1P for some i , setQ ← Q − i ℓ kP− j−1P .
g. IfQ = 0� then go back to Step b.
h. Return (ℓ kP−1P, ℓ kQ −1Q ).

Thecardinality of� (�q ℓ−1 ) can be computed asResx (χπ(x ), x ℓ−1− y)(1); since it isO (q ℓ ),
extracting random points of it and multiplying them by m requires O (ℓ log q ) operations
in �q ℓ−1 . Similarly, both kP and kQ are bounded by k = O (ℓ log q ). The lookup in Step f is
negligible if an efficient data structure such as a red-black tree is used to store the precomputed
table of Step d. Finally, the probability of going back to Step b isO (1/ℓ ) as proven in [6].

Using fast arithmetic, operations in �q ℓ−1 take at most (ℓ log q )1+o(1) time; hence:

Proposition 4.4. Algorithm 4.1 returns the curveφaEnd� (� ) isogenous to a prescribed curve
�/�q in probabilistic timeO (ℓ2+o(1) log2+o(1) q ), where ℓ = norm (a).

5 Ascending the lattice of orders
Orders in an imaginary quadratic field K are of the form � + f �K for some f ∈ �

known as the conductor; consequently, inclusion of orders simply translates to divisibility of
conductors. Those orders we are interested in contain �[π], so their conductors divide the
index [�K : �[π]].

We will be ascending the lattice of orders one step at a time: each step consists in enumer-
ating all orders lying directly above a prescribed order, that is, containing it with prime index
ℓ . The possible values for ℓ are the prime factors of [�K : �[π]] which can be listed by fac-
toring (the square-part of ) the discriminantΔ, for which the state-of-the-art proven method
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Figure 1: Locating End� by ascending a test-sequence of orders.

of Lenstra and Pomerance [15] uses L(q )1+o(1) operations. Enumerating orders above (resp.
below) then simply amounts to dividing (resp. multiplying) the conductor by the possible
ℓ ’s; naturally, since our orders are to contain �[π], this is subject to the condition that the
conductor remains a factor of the index [�K : �[π]].

Our strategy to locate the endomorphism ring in this lattice by testing orders and ascending
in corresponding directionsworks as follows: given someorder� � contained inEnd� (starting
with � � = �[π]), find an order � directly above it that still lies below End� ; then replace � �
by � and iterate the process. The ascension ends when no � directly above � � is contained
in End� ; then, we must have End� � � �. See Figure 1 where we start from the bottom and
ascend towards orders � for which the statement � ⊆ End� holds.

We formalize this procedure into:

Algorithm 5.1.
Input: An ordinary elliptic curve � over a finite field �q .

Output: An order isomorphic to the endomorphism ring of � .
1. Compute the Frobenius polynomial χπ(x ) of � .
2. Factor the discriminantΔ and construct the order � � = �[π].
3. For orders � directly above � �:
4. If � ⊆ End� set � � ← � and go to Step 3.
5. Return � �.

Steps 1 and 2 only require polynomial time in log q , except the factorization of the dis-
criminantΔ, which uses L(q )1+o(1) operations.

Under the GRH, the following result will be established in Section 7.

Proposition 5.2 (GRH). Let � be an order above �[π]. One can determine whether � ⊆
End� in probabilistic time L(q )1/

�
2+o(1) with failure probability o(1/ log2 q ).

The number of orders directly above�[π] (to be tested in Step 4) is the number of prime
factors of [�K : �[π]] and it decreases as � � grows; the number of ascending steps (of times
Step 3 is reached) is bounded by the sum of the exponents in the factorization of [�K : �[π]]
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into prime powers. These two quantities are smaller than log2Δ so the overall number of tests
is at most quadratic in log q . As a consequence, we have:

Theorem 5.3 (GRH). The endomorphism ring of an ordinary elliptic curve defined over �q can
be computed, with failure probability o(1), in probabilistic time L(q )1+o(1) +L(q )1/

�
2+o(1) where

the first term only accounts for the complexity of factoring the discriminantΔ = O (q ).

To unconditionally verify the output, we use the certification method of [3, Section 3.2],
which is straightforwardly adapted to incorporate the isogeny-computing routine of Section 4
and the proof material of Section 6 and 7. Under the GRH, it then takes L(q )1/

�
2+o(1) oper-

ations to unconditionally check whether � = End� for a prescribed � . We then obtain a
so-called Las Vegas algorithm for which the above theorem holds without the failure probabil-
ity statement.

The rest of this paper is devoted to the proof of Proposition 5.2.

6 Class groups from short relations
To test whether � ⊆ End� reliably, we characterize � by a set of relations R that hold

in it but not collectively in any order not containing it. We will then test whether they hold
in the isogeny graph, so we seek relations R for which the cost of computing the associated
isogeny, roughly
�

a∈R norm (a)
2, is small.

We start by bounding the norms of ideals to appear in our relations: form the set� of
prime ideals p of �[π] with norm less than some integer N to be fixed later, and consider
smooth ideals

σ (n) =
�
p∈�

pnp

for vectors n ∈ �� . If σ� (n) denotes the corresponding ideal class in cl(� ), the kernel of
the map σ� is a lattice Λ� in �� consisting of all relations of � formed of ideals in� : the
coordinate np is the multiplicity of the ideal p in the relation. When σ� is surjective, we have

cl(� ) � ��/Λ� .
Nothing of value is lost by only considering relations R ofΛ� since, assuming the GRH, Bach
proved in [1] that σ� is indeed surjective provided thatN ≥ 12 log2 |Δ|.

The isogeny chain associated to a relation n ∈ Λ� comprises at most �n�1 =
� |np| isoge-

nies of degree up toN so the complexity of evaluating it is crudely bounded by �n�1N 2+o(1).
This norm can be controlled by a result of Jao, Miller, and Venkatesan [12, Corollary 1.3] and
more specifically its following specialization found in [5,Theorem 2.1].

Theorem 6.1. Under the GRH, for all ε > 0 there exists some c > 1 such that the following holds.
Let� be an imaginary quadratic order, denote byD its discriminant, and letN and l be integers
verifying

N ≥ log2+ε |D | and l ≥ c log |D |
log log |D | .

If n is drawn uniformly at random from the set of vectors of �� with norm l , the probability that
the ideal σ� (n) falls in any subset S of cl(� ) is at least 1

2
#S

# cl(� ) .

Corollary 6.2 (GRH). ForN = log2+ε |D | the diameter ofΛ� is o(log4+ε |D |).

6



Proof. To prove this, we construct a generating set forΛ� formed byO (log2+ε |D |) relations
of norm o(log2 |D |). Siegel showed in [18] that cl(� ) is an abelian group of orderD1/2+o(1) so
there existO (log |D |) ideal classes αi such that ��/Λ� �

� 〈αi 〉; we fix these and proceed
to write a generating set forΛ� consisting of:

• relations expressing that αord(αi )i = 1;

• relations expressing the primes p ∈� in terms of the αi .

First define a map σ−1� by fixing a preimage of norm at most c log |D |/ log log |D | for each
ideal class; it exists byTheorem 6.1. Now use a double-and-add approach to ensure that norms
remain small: for each i , express that αord(αi )i = 1 by the relations

(i) σ−1�
�
α2

j

i
�− 2σ−1�
�
α2

j−1
i
�
for j ∈ {1, . . . , �log2 ord(αi )�};

(ii)
�

j b jσ−1�
�
α2

j

i
�
where b j denotes the j th least significant bit of ord(αi ).

Now write each p ∈ � on the αi by decomposing its class as a product
�
αnii where ni ∈

{0, . . . , ord(αi )}; notingδp the vector with coordinate one at p and zero elsewhere, this gives
the relations:

(iii) δp −
�

i
�

j ci jσ−1�
�
α2

j

i
�
where ci j is the j th least significant bit of ni .

Preimages by σ� have length o(log |D |) and there are at most
��log2 ord(αi )� = O (log |D |)

terms, therefore each such relation has length o(log |D |)2.
To generate short relations, we simply plug this bound into the algorithm of Seysen [17]

and rely on ingredients of Hafner and McCurley [10] for the proof. Note that Childs, Jao,
and Soukharev [5] proposed a similar algorithm that finds one relation, while we seek several
random relations to characterize the order � .
Algorithm 6.3.

Input: An imaginary quadratic order � of discriminant D and some z > 0.
Output: A quasi-random relation n ∈ Λ� with �n�1 = o(log6+ε |D |).

1. Form the set� of primes p of � with norm less thanN = L(q )z .
2. Draw uniformly at random a vector x ∈ �� with coordinates
|xp| < log4+ε |D | if norm (p) < log2+ε |D |, else xp = 0.

3. Compute the reduced ideal representative a of σ� (x ).
4. If a factors over� as�pyp then return the vector x − y .
5. Otherwise, go back to Step 2.

Proposition 6.4 (GRH). Let � be an order containing �[π]; its discriminant D is then at
mostΔ = O (q ). The algorithm above requires L(q )z+o(1) + L(q )1/(4z )+o(1) operations to find a
relation of � whose associated isogeny can be computed in time L(q )2z+o(1).

Proof. Step 4 consists in testing the smoothness of (the norm of ) a; Lenstra, Pila, and Pomer-
ance [14, Corollary 1.2] proved this requires exp

�
log2/3+o(1)N
�
log3 q operations, that is,

L(q )o(1) sinceN = L(q )z . The probability that this factorization is successful, in other words,
that the norm of a isN -smooth is L(q )1/(4z )+o(1) provided that it behaves as a random integer;
this follows directly from combining the corollary above with [17, Proposition 4.4]; see also
[10]. The relation involves o(log4+2+ε q ) ideals of norm up to L(q )z , whence the time bound
for evaluating the associated isogeny by Proposition 4.4.

7



The relations we generate discriminate between orders with distinct class groups:

Lemma 6.5 (GRH). Take any two orders � and � �; a relation of � generated by the algorithm
above has a probability [Λ� : Λ� ∩Λ� � ]−1 + o(1) of holding in � �.
Proof. This follows directly from [10, Lemma 2] adapted to the context of our algorithm,
which proves the quasi-randomness of the relations it generates.

7 Orders from class groups
Now, to finally prove Proposition 5.2, let us establish the correctness and runtime of the

following algorithm.

Algorithm 7.1.
Input: An ordinary elliptic curve �/�q and an order � ⊇ �[π].

Output: Whether � ⊆ End� , with failure probability o(1/ log2 q ).
1. Generate a set of 3 log log q relations of � with Algorithm 6.3.
2. If one does not hold in the isogeny graph, return false.
3. Check whether � ⊆ End� locally at 2 and 3; if not, return false.
4. Return true.

By Proposition 6.4, Step 1 takes L(q )z+o(1) + L(q )1/(4z )+o(1) time to find relations whose
associated isogenies are then evaluated by Step 2 in L(q )2z+o(1) operations. To balance these
quantities, we set z = 1/2

�
2 which yields an overall complexity of L(q )1/

�
2+o(1).

The correctness follows from Lemma 3.2 andTheorem 3.1, in that Steps 1 and 2 determine
whetherΛ� ⊆ ΛEnd� ; the failure probability is at most (2+ o(1))−3 log log q = o(1/ log2 q ), by
Lemma 6.5 applied to � � = End� . The proposition below proves that, combined with Step 3,
this determines whether � ⊆ End� .
Proposition 7.2. Let � and � � be two orders in an imaginary quadratic field K . The lattice
Λ� � containsΛ� if and only if the order � � contains � or:

1. K =�(
�−4) and � � has conductor 2;

2. K =�(�−3) and � � has conductor 2 or 3;
3. The prime 2 splits inK and � � has index 2 in some order above � of odd conductor.

Intuitively, this means that identifying orders by their class groups has a single blind spot
locally at 2 and 3 where the two biggest orders cannot be distinguished; Step 3 is thus needed
to ensure that the endomorphism ring is accurately determined even amongst those orders
with identical class groups. This is a straightforward refinement of [3, Proposition 5], but we
give a proof below for completeness.

Proof. Denote by S� (resp. S� �) the set of primes ℓ that split into principal ideals in � (resp.
� �). Using relations formed of a single prime ideal, we see thatΛ� ⊆ Λ� � implies S� ⊆ S� � .
Now, S� (resp. S� � ) is also the set of primes that split completely in the ring class field L� of �
(resp. L� �). By Chebotarev’s density theorem, S� ⊆ S� � thus implies L� � ⊆ L� , which means
that the class field theory conductor f(L� �/K ) of L� � divides f(L� /K ).

This conductor f(L� /K ) is related to f� by (see [7, Exercises 9.20–9.23]):

f(L� /K ) =




�K , whenK =�(
�−4) and f� = 2,

�K , whenK =�(�−3) and f� = 2 or 3,
u�K , when 2 splits inK and f� = 2u with u odd,
f� �K , otherwise.
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Naturally, the same stands for � �. In the fourth case, the fact that f(L� /K ) divides f(L� �/K )
implies that f� � divides f� , in other words � ⊆ � �; the three other cases correspond, in order,
to the exceptions listed in the proposition.

Finally, let us address Step3. To checkwhether� ⊆ End� locally at someprime p , oneuses
a method of Kohel [13] known as “climbing the volcano”, which can be done in the traditional
“blind” way by following three p -isogeny paths from � and seeing which hits the “floor of
rationality” first, or using themore advanced technique of [11] to directly determine the kernel
of the ascending p -isogeny by pairing computations. Eventually, both methods return the
valuation at p of the conductor of End� by computing at mostO (valp [�K : �[π]]) isogenies
of degree p ; since we use p = 2, 3, this takes polynomial time in log q .
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