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Abstract. We describe a space-efficient algorithm for solving a generalization of the subset sum
problem in a finite group G , using a Pollard-ρ approach. Given an element z and a sequence
of elements S , our algorithm attempts to find a subsequence of S whose product in G is equal
to z . For a random sequence S of length d log2 n, where n = #G and d � 2 is a constant, we
find that its expected running time isO (

�
n log n) group operations (we give a rigorous proof for

d > 4), and it only needs to storeO (1) group elements. We consider applications to class groups
of imaginary quadratic fields, and to finding isogenies between elliptic curves over a finite field.

1. Introduction

Let S be a sequence of elements in a finite groupG of order n, written multiplicatively. We say
that S representsG if every element ofG can be expressed as the (ordered) product of a subsequence
of S . Ideally, we want S to be short, say k = d log2 n for some constant d known as the density of S .

In order for S to representG , we clearly require d � 1, and for sufficiently large n, any d > 1
suffices. More precisely, Babai and Erdős [3] show that for all

k � log2 n + log2 log n + 2
there exists a sequence S of length k that representsG . Their proof is non-constructive, but, in the
case thatG is abelian, Erdős and Rényi [10] show that a randomly chosen sequence of length

k = log2 n + log2 log n +ωn

representsG with probability approaching 1 as n→∞, provided thatωn→∞. The randomness
assumption is necessary, since it takes much larger values of k to ensure that every sequence of
length k representsG , see [9, 33].

In related work, Impagliazzo and Naor prove that for a random sequence S of density d > 1,
the distribution of subsequence products almost surely converges to the uniform distribution on
G as n goes to infinity [15, Proposition 4.1]. This result allows us to bound the complexity of our
algorithm for almost all S with d > 4 (more precisely, for all but an exponentially small fraction of
sequences of a given length k > 4 log2 n).

Given a sequence S that represents G (or a large subset of G ), we wish to find an explicit
representation of a given group element z as the product of a subsequence of S ; we call this a short
product representation of z . In the special case thatG is abelian and the elements of S are distinct,
this is the subset sum problem in a finite group. Variations of this problem and its decision version
have long been of interest to many fields: complexity theory [17], cryptography [20], additive
number theory [3], Cayley graph theory [2], and information theory [1], to name just a few.

As a computational framework, we work with a generic groupG whose elements are uniquely
identified, and assume that all group operations are performed by a black box that can also provide
random group elements; see [29, Chapter 1] for a formal model. Time complexity is measured by
counting group operations (calls to the black box), and for space complexity we count the number
of group elements that are simultaneously stored. In most practical applications, these metrics are
within a polylogarithmic factor of the usual bit complexity.

Working in this model ensures that our algorithms apply to any finite group for which a suitable
black box can be constructed. It also means that finding short product representations is prov-
ably hard. Indeed, the discrete logarithm problem in a cyclic group of prime order has a lower
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bound ofΩ(
�
n) in the generic group model [26], and is easily reduced to finding short product

representations.
In the particular groupG = �/n�, we note that finding short product representations is easier

for non-generic algorithms: the problem can be lifted to k subset sum problems in�, which for
suitable inputs can be solved with a time and space complexity ofO (n0.3113) via [14], beating the
Ω(
�
n) generic lower bound noted above. This is not so surprising, since working with integers

is often easier than working in generic groups; for instance, the discrete logarithm problem in�
corresponds to integer division and can be solved in quasi-linear time.

A standard technique for solving subset sum problems in generic groups uses a baby-step giant-
step approach, which can also be used to find short product representations (Section 2.1). This
typically involvesO (2k/2) group operations and storage forO (2k/2) group elements. The space
bound can be improved toO (2k/4) via a method of Schroeppel and Shamir [24].

Here, we give a Pollard-ρ type algorithm [21] for finding short product representations in
a finite group (Section 2.2). It only needs to store O (1) group elements, and, assuming S is a
random sequence of density d > 4, we prove that its expected running time isO (

�
n log n) group

operations; alternatively, by dedicatingO (nε) space to precomputations, the time complexity can
be reduced toO (

�
n) (Section 3).

We also consider two applications: representing elements of the class group of an imaginary
quadratic number field as short products of prime ideals with small norm (Section 4.2), and finding
an isogeny between two elliptic curves defined over a finite field (Section 4.3). For the latter, our
method combines the advantages of [11] and [12] in that it requires little memory and finds an
isogeny that can subsequently be evaluated in polynomial time.

In practice, our algorithm performs well so long as d � 2, and its low space complexity allows it
to feasibly handle much larger problem instances than other generic methods (Section 5).

2. Algorithms

Let S be a sequence of length k in a finite groupG of order n, let z be an element ofG , and let
� (S ) denote the set of all subsequences of S . Our goal is to find a preimage of z under the product
mapπ :� (S )→ G that sends a subsequence of S to the (ordered) product of its elements.

2.1. Baby-step giant-step. Let us first recall the baby-step giant-step method. We may express
S = AB as the concatenation of two subsequences of roughly equal length. For any sequence
y = (y1, . . . , ym), letµ(y) = (y−1m , . . . , y−11 ), so thatπ(y) andπ(µ(y)) are inverses inG . We then
search for x ∈ � (A) (a baby step) and y ∈ � (B ) (a giant step) which “collide” in the sense that
π(x ) = π(zµ(y)), where zµ(y) denotes the sequence (z , y−1m , . . . , y−11 ).

Baby-step giant-step Algorithm
Input: A finite sequence S in a groupG and a target z ∈ π(� (S )).
Output: A subsequence of S whose product is z .
1. Express S in the form S = AB with #A≈ #B .
2. For each x ∈ � (A), store (π(x ), x ) in a table indexed byπ(x ).
3. For each y ∈ � (B ):
4. Lookupπ(zµ(y)) in the table computed in Step 2.
5. Ifπ(zµ(y)) = π(x ) is found then output x y , otherwise continue.

The table constructed in Step 2 is typically implemented as a hash table, so that the cost of the
lookup in Step 4 is negligible. Elements of� (A) and� (B )may be compactly represented by
bit-strings of length �k/2� = O (log n), which is approximately the size of a single group element. If
these bit-strings are enumerated in a suitable order, each step can be derived from the previous step
usingO (1) group operations1. The algorithm then performs a total ofO (2k/2) group operations
and has a space complexity ofO (2k/2) group elements. One can make a time-space trade off by
varying the relative sizes of A and B .

1With a Gray code, exactly one group operation is used per step, see [19].
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This algorithm has the virtue of determinism, but its complexityO (nd /2) is exponential in the
density d (as well as log n). For d > 1, a randomized approach works better: select

�
n baby steps

x ∈ � (A) at random, then select random giant steps y ∈ � (B ) until a collisionπ(zµ(y)) = π(x )
is found. Assuming thatπ(x ) andπ(zµ(y)) are uniformly distributed inG , we expect to use

�
n

giant steps. To reduce the cost of each step, one may partition A and B each into approximately d
subsequences Ai and Bi and precomputeπ(x ) for all x ∈ � (Ai ), andπ(µ(y)) for all y ∈ � (Bi ).
This yields an expected running time ofO (

�
n) group operations, using storage forO (

�
n) group

elements, for any fixed d .

2.2. A low-memory algorithm. In order to use the Pollard-ρ technique, we need a pseudo-
random function φ on the disjoint union � = � �� , where� = � (A) and� is the set
{zµ(y) : y ∈ � (B )}. This mapφ is required to preserve collisions, meaning that π(x ) = π(y)
impliesπ(φ(x )) = π(φ(y)). Given a hash function η : G →� , we may construct such a map as
φ = η ◦π. Under suitable assumptions (see Section 3), the Pollard-ρmethod can then be applied.

Pollard-ρAlgorithm
Input: A finite sequence S in a groupG and a target z ∈ π(� (S )).
Output: A subsequence of S whose product is z .
1. Pick a random element w ∈ � and a hash function η : G →� .
2. Find the least i > 0 and j � 0 such thatφ(i+ j )(w ) =φ( j )(w ).
3. If j = 0 then return to Step 1.
4. Let s =φ(i+ j−1)(w ) and let t =φ( j−1)(w ).
5. Ifπ(s ) �= π(t ) then return to Step 1.
6. If s ∈� and t = zµ(y) ∈� then output s y and terminate.
7. If t ∈� and s = zµ(y) ∈� then output t y and terminate.
8. Return to Step 1.

Step 2 can be implemented with Floyd’s algorithm [18, Exercise 3.1.6] using storage for just
two elements of� , which fits in the memory space ofO (1) group elements. More sophisticated
collision-detection techniques can reduce the number of evaluations ofφ while still storingO (1)
elements, see [7, 25, 31]. We prefer the method of distinguished points, which facilitates a parallel
implementation [32].

2.3. Toy example. LetG = (�/n�,+) and define S as the concatenation of the sequences A=
(3i ) and B = (5i ) for i ∈ {1, . . . , k/2}. We put n = 127 and k = 12, implying d ≈ 1.7. With
� =� �� as above, we define η : G →� via

x �−→
�

(Ai ){i :bi=1} when b0 = 1
zµ
�
(Bi ){i :bi=1}
�

when b0 = 0

where
�k/2

i=0 bi2
i is the binary representation of 96x mod n.

Starting from w = (2,−56,−53,−52,−5), the algorithm finds i = 4 and j = 6:

�
2,−56,−53,−52,−5�

�
33, 35
� �

2,−55,−54� �
2,−56,−55,−54,−52,−5� �

32, 34
� �

2,−55�

�
3, 32 , 35
�

�
2,−52,−5��

2,−56,−54,−52,−5�

�
3, 32 , 33 , 35
�

The two preimages of (32, 34) yield the short product representation

2 ≡ 3+ 32 + 33 + 35 + 5+ 52 + 54 + 55 + 56 mod 127.
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3. Analysis

The Pollard-ρ approach is motivated by the following observation: ifφ : X → X is a random
function on a set X of cardinality n, then the expected size of the orbit of any x ∈ X under the
action ofφ is
�
πn/2 (see [28] for a rigorous proof ). In our setting,X is the set� andφ = η◦π.

Alternatively, sinceφ preserves collisions, wemay regardX as the setπ(� ) ⊂ G and useϕ = π◦η.
We shall take the latter view, since it simplifies our analysis.

Typically the function ϕ is not truly random, but under a suitable set of assumptions it may
behave so. To rigorously analyze the complexity of our algorithm, we fix a real number d > 4 and
assume that:

(1) the hash function η : G →� is a random oracle;
(2) S is a random sequence of density d .
For any finite set U , let �U denote the uniform distribution on U , which assigns to each

subsetX ofU the value #X /#U . For any function f :U →V , let f∗�U denote the pushforward
distribution by f of�U , which assigns to each subset Y ofV the value

f∗�U (Y ) =
#{u ∈U : f (u) ∈ Y }

#U
.

Assumption (2) implies that A and B are both random sequences with density greater than 2.
By [15, Proposition 4.1], this implies that

ProbA
��π∗�� −�G� � n−c

�
� n−c ,

where c = (d − 2)/4 > 1/2, and the variation distance �σ − τ� between two distributions σ and
τ onG is defined as the maximum value of |σ (H )− τ(H )| over all subsetsH ofG . Similarly, we
have

ProbB
��π∗�� −�G� � n−c

�
� n−c .

From now on we assume that S is fixed and that π∗�� is within variation distance 2n−c of
the uniform distribution on G ; by the argument above, this happens with probability at least
1 − 2n−c . Recall that a random oracle η : G →� is a random function drawn uniformly from
� G , that is, each value η(x ) is drawn uniformly and independently from� . Thus, for any g ∈ G ,
the distribution ofπ(η( g )) isπ∗�� . It is then easy to verify that

�(η �→ π ◦ η)∗�� G −�GG � � 2n−c .
In other words, for a random oracle η, the functionϕ = π◦η is very close to being a random oracle
(fromG toG ) itself.

Since c > 1/2, we obtain, as in [21], anO (
�
n) bound on the expectation of the least positive

integer i + j for which ϕ(i+ j )( g ) = ϕ( j )( g ), for any g = π(w ) ∈ G . For d > 2, the probability
thatπ(s ) �= π(t ) in Step 5 is o(1), since� is then larger thanG and collisions in the map ϕ (and
φ) are more likely to be caused by collisions in π than collisions in η. Having reached Step 6,
we obtain a short product representation of z with probability 1/2, since by results of [15] the
value of π(x ) is independent of whether x ∈ � or x ∈ � . The expected running time is thus
O (k
�
n) = O (

�
n log n) group operations, and, as noted in Section 2.2, the space complexity is

O (1) group elements. We summarize our analysis with the following proposition.

Proposition. Let S be a random sequence of constant density d > 4 and let η : G →� be a random
oracle. Then our Pollard-ρ algorithm uses O (

�
n log n) expected group operations and storage for

O (1) group elements.

As in Section 2.1, to speed up the evaluation of the product mapπ, one may partition A and
B into subsequences Ai and Bi of length m and precompute π(� (Ai )) and π(µ(� (Bi )). This
requires storage forO (k2m/m) group elements and speeds up subsequent evaluations ofπ by a
factor of m. If we let m = ε log2 n, for any ε > 0, we obtain the following corollary.

Corollary. Under the hypotheses of the proposition above, our Pollard-ρ algorithm can be imple-
mented to run in expected timeO (

�
n) usingO (nε) space.
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In our analysis above, we use a random S with d > 4 to prove that products of random elements
of� and� are quasi-uniformly distributed in G . If we directly assume that both π∗�� and
π∗�� are quasi-uniformly distributed, our analysis applies to all d � 2, and in practice we find
this to be the case. However, we note that this does not apply to d < 2, for which we expect a
running time ofO (n(4−d )/4 log n), as discussed in Section 5.

4. Applications

As a first application, let us consider the case whereG is the ideal class group of an order � in
an imaginary quadratic field. We may assume

� = �+ D +
�
D

2
�,

where the discriminant D is a negative integer congruent to 0 or 1modulo 4. Modulo principal
ideals, the invertible ideals of� form a finite abelian group cl(� ) of cardinality h . The class number
h varies with D , but is on average proportional to

�|D | (more precisely, log h ∼ 1
2 log |D | as

D →−∞, by Siegel’s theorem [27]). Computationally, invertible � -ideals can be represented as
binary quadratic forms, allowing group operations in cl(� ) to be computed in timeO (log1+ε |D |),
via [22].

4.1. Prime ideals. Let ℓi denote the i th largest prime number for which there exists an invertible
� -ideal of norm ℓi and let αi denote the unique such ideal that has nonnegative trace. For each
positive integer k , let Sk denote the sequence of (not necessarily distinct) ideal classes

Sk = ([α1], [α2], . . . , [αk ]).

For algorithms that work with ideal class groups, Sk is commonly used as a set of generators for
cl(� ), and in practice k can be made quite small, conjecturallyO (log h). Proving such a claim is
believed to be very difficult, but under the generalized Riemann hypothesis (GRH), Bach obtains
the following result [4].

Theorem (Bach). Assume the GRH. If D is a fundamental2 discriminant and ℓk+1 > 6 log2 |D |,
then the set Sk generates cl(� ).

Unfortunately, this says nothing about short product representations in cl(� ). Recently, a
special case of [16, Corollary 1.3] was considered in [8,Theorem 2.1] which still assumes the GRH
but is more suited to our short product representation setting. Nevertheless, for our purpose here,
we make the following stronger conjecture.

Conjecture. For every d0 > 1 there exist constants c > 0 and D0 < 0 such that if D � D0 and Sk
has density d � d0 then

(1) π(� (Sk )) = G , that is, Sk representsG ;
(2)
���π∗�� (Sk ) −�G
��� < h−c ;

whereG is the ideal class group cl(� ) and h is its cardinality.
In essence, these are heuristic analogs to the results of Erdős and Rényi, and of Impagliazzo and

Naor, respectively, suggesting that the distribution of the classes [αi ] resembles that of random
elements uniformly drawn from cl(� ). Note that (1), although seemingly weaker, is only implied
by (2) when c > 1.

Empirically, (1) is easily checked: for d0 = 2 we have verified it using D0 = −3 for every
imaginary quadratic order with discriminantD � −108, and for 104 randomly chosen orders with
D logarithmically distributed over the interval [−1016,−108] (see Figure 1). Although harder to
test, (2) is more natural in our context, and practical computations support it as well. Even though
we see no way to prove this conjecture, we assume its veracity as a useful heuristic.

2Meaning that either D is square-free, or D/4 is an integer that is square-free modulo 4.
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Figure 1. Dots plot the minimal k such that Sk satisfies conjecture (1); gray dots for
all discriminants D � −108 and black dots for 104 random discriminants logarithmi-
cally distributed over the interval [−1016,−108]. The lines represent k = d log2 h for
d = 1, 2.

4.2. Short relations. In [13], Hafner and McCurley give a subexponential algorithm to find
representatives of the form

�
αeii for arbitrary ideal classes of imaginary quadratic orders; the

ideals αi have subexponential norms, but the exponents ei can be as large as the class number h.
Asking for small exponents ei ∈ {0, 1}means, in our terminology, writing elements z ∈ G as

short product representations on Sk = ([αi ]). Under the conjecture above, this can be achieved by
our low-memory algorithm inO (|D |1/4+ε) expected time, using k = O (log h) ideals αi .

We can even combine these approaches. If the target element z is represented by an ideal of
small norm, say z = [αk+1], we get what we call a short relation for cl(� ). Conjecture (1) implies
not only that the map that sends each vector (e1, . . . , ek+1) ∈ �k+1 to the class of the ideal

�
αeii

is surjective, but also that there exists a set of short relations generating its kernel latticeΛ. This
gives a much better upper bound on the diameter ofΛ than was used by Hafner andMcCurley,
and their algorithm can be adapted to make use of this new bound and find, in subexponential
time, representatives

�
αeii with ideals αi of subexponential norm and length

� |ei | bounded
polynomially in log |D |. See [5] for details, or [8] for an equivalent construction.
4.3. Short isogenies. Now let us consider the problemof finding an isogeny between twoordinary
elliptic curves �1 and �2 defined over a finite field �q . This problem is of particular interest to
cryptography because the discrete logarithm problem can then be transported from �1 to �2. An
isogeny between curves �1 and �2 exists precisely when �1 and �2 lie in the same isogeny class.
By a theorem of Tate, this occurs if and only if #�1(�q ) = #�2(�q ), which can be determined in
polynomial time using Schoof ’s algorithm [23].

The isogeny class of �1 and �2 can be partitioned according to the endomorphism rings of the
curves it contains, each of which is isomorphic to an order � in an imaginary quadratic number
field. Identifying isomorphic curves with their j -invariant, for each order � we define

Ell(� ) = { j (� ) : End(� ) ∼= � } ,
where � denotes an elliptic curve defined over �q . The set Ell(� ) to which a given curve belongs
can be determined in subexponential time, under heuristic assumptions [6]. An isogeny from �1
to �2 can always be decomposed into two isogenies, one that is essentially determined by End(�1)
and End(�2) (and can be made completely explicit but may be difficult to compute), and another
connecting curves that lie in the same set Ell(� ). We shall thus restrict ourselves to the problem of
finding an isogeny between two elements of Ell(� ).



FINDING SHORT PRODUCT REPRESENTATIONS IN FINITE GROUPS 7

The theory of complex multiplication states that Ell(� ) is a principal homogeneous space (a
torsor) for the class group cl(� ): each ideal α acts on Ell(� ) via an isogeny of degreeN(α), and
this action factors through the class group. We may then identify each ideal class [α] with the
image [α] j (�i ) of its action on j (�i ). This allows us to effectively work in the group cl(� ) when
computing isogenies from �i .

Galbraith addressed the search for an isogeny �1→�2 using a baby-step giant-step approach
in [11]. A low-memory variant was later given in [12] which produces an exponentially long chain
of low-degree isogenies; from that, a linearly long chain of isogenies of subexponential degree
may be derived by smoothing the corresponding ideal in cl(� ) using variants of the method of
Hafner andMcCurley. Alternatively, our low-memory algorithm can be used to derive a chain of
low-degree isogenies with length linear in log |D |; since isogenies are much more time consuming
to evaluate than class group operations, finding the long chain dominates the overall cost. Therefore,
our method can advantageously replace the smoothing step since it produces a much shorter
isogeny chain using as little memory, with negligible impact to the overall runtime.

However, let us describe how our method applies naturally to the torsor Ell(� ), and directly
finds a short chain of low-degree isogenies from �1 to �2 using very little memory.

Let Sk = AB be such that conjecture (1) holds, where A and B are roughly equal in size, and
define� =� �� where� = � (A) and� = µ(� (B )). We view each element of� as a
short chain of isogenies of small prime degree ℓi =N(αi ) that originates at �1; similarly, we view
elements of� as chains of isogenies originating at �2. Now letπ :� → Ell(� ) be the map that
sends x ∈ � (resp. x ∈ �) to the element of Ell(� ) that is the codomain of the isogeny chain
defined by x and originating at �1 (resp. �2). It suffices to find a collision between an element of
� and an element of� under the mapπ: this yields an isogeny chain from �1 and an isogeny
chain from �2 that have the same codomain. Composing the first with the dual of the second gives
an isogeny from �1 to �2.

The iteration functionφ on� can now be defined as the composition η ◦π where η is a map
from Ell(� ) to� that behaves like a random oracle. Using this formalism, our Pollard-ρ algorithm
can be applied directly, and under the conjecture it finds an isogeny in timeO (h1/2+ε). In terms of
space, it only needs to storeO (1) elements of cl(� ) andEll(� ), which isO (log q ) bits. However, in
order to compute isogenies, modular polynomials Φℓ (X ,Y )might be used, each of which requires
O (ℓ3 log ℓ) bits. If we heuristically assume that ℓk = O (k log k ) = O (log h log log h), the overall
space complexity is then bounded by O (log3+ε h) = O (log3+ε q ) bits, which is polynomial in
log q . This can be improved toO (log2+ε q ) bits by using the algorithm of [30] to directly compute
Φℓ ( j (� ),Y ) in a space-efficient manner.

5. Computations

To test our generic low-memory algorithm for finding short product representations in a
practical setting, we implemented black-boxes for three types of finite groups:

(1) G = � (�p ), the elliptic curve � : y2 = x3 + x + 1 over a finite field �p .
(2) G = cl(� ), where � is an order in an imaginary quadratic field.3
(3) G =GL(2,�p ), the group of invertible 2× 2matrices over �p .

To simplify the implementation, we restricted to cases where �p is a prime field. The groups � (�p )
are abelian groups, either cyclic or the product of two cyclic groups. The groups cl(� ) are also
abelian, but may be highly non-cyclic (we specifically chose some examples with large 2-rank),
while the groupsGL(2,�p ) are non-abelian.

For the groups � (�p ), we used the sequence of points S = (P1, . . . , Pk ) with Pi = (xi , yi ),
where xi is the i th smallest positive integer for which x3i + xi +1 is a quadratic residue y

2
i modulo p

with yi � (p − 1)/2; our target z was the point Pk+1 . For the groups cl(� ), we used the sequence
3We identify � by its discriminant D and may write cl(D ) instead of cl(� ).
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Sk defined in Section 4.1 with z = [αk+1]. For the groupsGL(2,�p ), we simply chose a sequence
S of length k and a target element z at random.

Table 1 lists performance data obtained by applying our Pollard-ρ algorithm to various groups
G and sequences S of densities d = k/ log2 n ranging from just under 2 to slightly more than 4.
Each row compares expected values with actual results that are averages over at least 103 runs.

The parameter c counts the number of collisionsφ(i+ j )(w ) =φ( j )(w ) that were needed for a
run of the algorithm to obtain a short product representation. Typically c is greater than 1 because
not every collision yields a short product representation. The parameterρtot is the sum ofρ = i + j
over the c collisions required, and represents a lower bound on the number of times the mapφ
was evaluated. With efficient collision detection, the actual number is very close to ρtot (using the
method of distinguished points we were able to stay within 1% ).

The expected values of c andρtot listed inTable 1were computed under the heuristic assumption
that η : G →� andπ :� → G are both random functions. This implies that while iteratingφ
we are effectively performing simultaneous independent random walks onG and� . Let X and
Y be independent random variables for the number of steps these walks take before reaching a
collision, respectively. The probability thatπ(s ) = π(t ) in Step 5 is P (X � Y ), and the algorithm
then proceeds to find a short product representation with probability 1/2.

Using the probability density u exp(−u2/2)d u of X /
�
#G and Y /

�
#� , we find

E[c ] = 2/P (X � Y ) = 2(1+ r ),

where r = #G/#� . One may also compute

E[ρtot] = E[c ]E[min(X ,Y )] =
�
2πn(1+ r ).

For d > 2, we have r ≈ 0 for large n, so that E[c ] ≈ 2 and E[ρtot] ≈
�
2πn. For d = 2, we have

E[c ] = 3 and E[ρtot] =
�
3πn (when k is even). For d < 2, the value of E[c ] increases with n and

we have E[ρtot] = O (n(4−d )/4).

In addition to the tests summarized in Table 1, we applied our low memory algorithm to some
larger problems that would be quite difficult to address with the baby-step giant-step method.
Our first large test used G = � (�p ) with p = 280 + 13, which is a cyclic group of order n =
p +1+1475321552477, and the sequence S = (P1, . . . , Pk )with points Pi defined as above with
k = 200, which gives d ≈ 2.5. Our target element was z = P201 with x -coordinate 391. The
computation was run in parallel on 32 cores (3.0 GHz AMD Phenom II), using the distinguished
points method.4 The second collision yielded a short product representation after evaluating the
mapφ a total of 1480862431620 ≈ 1.35�n times.

After precomputing 655360 partial products (as discussed in Section 3), each evaluation ofφ
used 5 group operations, compared to an average of 50 without precomputation, and this required
just 10megabytes of memory. The entire computation used approximately 140 days of CPU time,
and the elapsed time was about 4 days. We obtained a short product representation for z as the
sum of 67 points Pi with x -coordinates less than 391. In hexadecimal notation, the bit-string that
identifies the corresponding subsequence of S is:

542ab7d1f505bdaccdbeb6c2e92180d5f38a20493d60f031c1

Our second large test used the groupG = cl(1− 2160), which is isomorphic to

(�/2�)8 ×�/4�×�/8�×�/80894875660895214584�,
see [29, Table B.4]. We used the sequence Sk with k = 200, and chose the target z = [α201] with
N(α201) = 2671. We ran the computation in parallel on 48 cores, and needed 3 collisions to obtain
a short product representation, which involved a total of 2856153808020 ≈ 3.51�n evaluations
ofφ. As in the first test, we precomputed 655360 partial products so that each evaluation ofφ
used 5 group operations. Approximately 900 days of CPU time were used (the group operation in

4In this parallel setting we may have collisions between two distinct walks (a λ-collision), or a single walk may collide
with itself (a ρ-collision). Both types are useful.
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expected observed
G log2 n k d c ρtot c ρtot

�/�220+7 20.00 40 2.00 3.00 3144 3.00 3162
60 3.00 2.00 2568 2.01 2581
80 4.00 2.00 2567 2.01 2565

�/�224+43 24.00 48 2.00 3.00 12577 3.02 12790
72 3.00 2.00 10269 2.03 10381
96 4.00 2.00 10268 2.00 10257

�/�228+3 28.00 56 2.00 3.00 50300 2.95 49371
84 3.00 2.00 41070 2.02 41837
112 4.00 2.00 41069 1.98 40508

�/�232+15 32.00 64 2.00 3.00 201196 3.06 205228
96 3.00 2.00 164276 1.96 160626
128 4.00 2.00 164276 2.04 169595

�/�236+31 36.00 72 2.00 3.00 804776 2.95 796781
108 3.00 2.00 657097 2.00 655846
144 4.00 2.00 657097 1.98 657097

�/�240+15 40.00 80 2.00 3.00 3219106 2.90 3120102
120 3.00 2.00 2628390 1.97 2604591
160 4.00 2.00 2628390 2.06 2682827

cl(1− 240) 19.07 40 2.10 2.52 2088 2.44 2082
60 3.15 2.00 1859 2.02 1845
80 4.20 2.00 1858 2.01 1863

cl(1− 248) 23.66 48 2.03 2.79 10800 2.75 10662
72 3.04 2.00 9140 1.97 8938
96 4.06 2.00 9140 1.99 9079

cl(1− 256) 27.54 56 2.03 2.73 40976 2.69 40512
84 3.05 2.00 35076 2.06 36756
112 4.07 2.00 35076 1.98 35342

cl(1− 264) 30.91 64 2.07 2.47 125233 2.59 131651
96 3.11 2.00 112671 1.98 111706
128 4.14 2.00 112671 1.99 111187

cl(1− 272) 35.38 72 2.04 2.65 609616 2.60 598222
108 3.05 2.00 529634 2.00 534639
144 4.07 2.00 529634 2.00 532560

cl(1− 280) 39.59 80 2.02 2.76 2680464 2.80 2793750
120 3.03 2.00 2283831 2.01 2318165
160 4.04 2.00 2283831 2.04 2364724

GL(2,�37) 20.80 42 2.02 2.87 4053 2.84 4063
62 2.98 2.00 3384 1.99 3358
84 4.04 2.00 3384 1.97 3388

GL(2,�67) 24.24 48 1.98 3.18 14087 3.08 13804
72 2.97 2.00 11168 2.10 11590
96 3.96 2.00 11167 2.01 11167

GL(2,�131) 28.12 56 1.99 3.09 53251 3.03 52070
84 2.99 2.00 42851 1.94 42019
112 3.98 2.00 42851 1.98 42146

GL(2,�257) 32.02 64 2.00 3.01 202769 3.03 204827
96 3.00 2.00 165237 2.02 165742
128 4.00 2.00 165237 2.00 165619

GL(2,�511) 36.10 72 1.99 3.07 842191 3.18 886141
108 2.99 2.00 679748 1.97 668416
144 3.99 2.00 679747 2.04 703877

GL(2,�1031) 40.04 80 2.00 3.03 3276128 2.99 3243562
120 3.00 2.00 2663155 2.02 2677122
160 4.00 2.00 2663154 2.08 2708512

Table 1. Comparison of expected vs. observed values on various groups.
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cl(D ) is slower than in the group E (�p ) used in our first example). We obtained a representative
for the ideal class z as the product of 106 ideals with prime norms less than 2671. The bit-string
that encodes the corresponding subsequence of Sk is:

5cf854598d6059f607c6f17b8fb56314e87314bee7df9164cd
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