{\rtf1\ansi\ansicpg1252\cocoartf1038\cocoasubrtf250 {\fonttbl\f0\fswiss\fcharset0 Helvetica;} {\colortbl;\red255\green255\blue255;} \paperw11900\paperh16840\margl1440\margr1440\vieww10900\viewh13960\viewkind0 \pard\tx566\tx1133\tx1700\tx2267\tx2834\tx3401\tx3968\tx4535\tx5102\tx5669\tx6236\tx6803\ql\qnatural\pardirnatural \f0\fs24 \cf0 /////// Computation of the correspondence curve X_C in characteristic 2\ \ // to get the general equation, one takes\ F:=FunctionField(GF(2),6);\ // otherwise\ F:=GF(2^4);\ a:=Random(F);b:=Random(F);c:=Random(F);d:=Random(F);e:=Random(F);f:=Random(F);\ \ // We take here an ordinary curve C (we will need a second copy C2 for technical reasons)\ P:=PolynomialRing(F,3);\ P2:=PolynomialRing(P,2);\ \ C:=(a*x^2+b*x*y+c*x*z+d*y^2+e*y*z+f*z^2)^2-x*y*z*(x+y+z);\ phi:=hom

P2 | X,Y,1>;\ C2:=phi(C);\ \ // An equation of the tangent to the point (x,y) is \ \ T:=Derivative(C,x)*X+Derivative(C,y)*Y+Derivative(C,z);\ \ // We express the coordinate X of a point of C=C2 which is on the tangent at the point (x,y)\ \ R:=Resultant(T,C2,Y);\ \ // We need now to see R as a polynomial over the function field of the curve in (x,y).\ \ // we make the following morphisms\ // x -> u, y-> v, z-> 1, X->w->W and Y-> 1\ \ F2:=FunctionField(F);\ P3:=PolynomialRing(F2);\ psi:=hom< P-> P3 | u,v,1>;\ P4:=PolynomialRing(P3);\ psi2:=hom< P2 -> P4 | psi,w,1>;\ F3:=FunctionField(psi(C));\ // For explicit computation, check the genus \ // Genus(F3);\ P4:=PolynomialRing(F3);\ \ R2:=P4!psi2(R);\ \ // Now we need to get rid of the double solution X=x (W=u in the new coordinates) of R so we get an equation of degree 2 in W\ \ XC:=R2 div(W-u)^2;\ R2 mod (W-u)^2;\ A:=Coefficient(XC,2);B:=Coefficient(XC,1);\ C:=Coefficient(XC,0);\ \ // Actually A,B,C are perfect square in F(u,v) so we take their square root\ \ t,Ar:=IsSquare(A);\ t,Br:=IsSquare(B);\ t,Cr:=IsSquare(C);\ \ // Here is the field of XC\ \ FXC:=FunctionField(Ar*W^2+Br*W+Cr);\ // Genus(FXC);\ }