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Abstract

Let k be a field and f be a Siegel modular form of weight h > 0 and genus g > 1 over
k. Using f , we define an invariant of the k-isomorphism class of a principally polarized
abelian variety (A, a)/k of dimension g. Moreover when (A, a) is the Jacobian of a smooth
plane curve, we show how to associate to f a classical plane invariant. As straightforward
consequences of these constructions when g = 3 and k ⊂ C we obtain (i) a new proof of a
formula of Klein linking the modular form χ18 to the square of the discriminant of plane
quartics ; (ii) a proof that one can decide when (A, a) is a Jacobian over k by looking
whether the value of χ18 at (A, a) is a square in k. This answers a question of J.-P. Serre.
Finally, we study the possible generalizations of this approach for g > 3.

1. Introduction

1.1 Torelli theorem
Let k be an algebraically closed field and g > 1 be an integer. If X is a (nonsingular irreducible
projective) curve of genus g over k, Torelli’s theorem states that the map X 7→ (JacX, j), associating
to X its Jacobian together with the canonical polarization j, is injective. The determination of the
image of this map is a long time studied question.
When g = 3, the moduli space Ag of principally polarized abelian varieties of dimension g and the
moduli space Mg of nonsingular algebraic curves of genus g are both of dimension g(g + 1)/2 =
3g− 3 = 6. According to Hoyt [12] and Oort and Ueno [25], the image of M3 is exactly the space of
indecomposable principally polarized abelian threefolds. Moreover if k = C, Igusa [17] characterized
the locus of decomposable abelian threefolds and that of hyperelliptic Jacobians, making use of two
particular modular forms Σ140 and χ18 on the Siegel upper half space of degree 3.
Assume now that k is any field and g > 1. J.-P. Serre noticed in [22] that a precise form of Torelli’s
theorem reveals a mysterious obstruction for a geometric Jacobian to be a Jacobian over k. More
precisely, he proved the following:

Theorem 1.1.1. Let (A, a) be a principally polarized abelian variety of dimension g > 1 over k,
and assume that (A, a) is isomorphic over k to the Jacobian of a curve X0 of genus g defined over
k. The following alternative holds :

(i) If X0 is hyperelliptic, there is a curve X/k isomorphic to X0 over k such that (A, a) is k-
isomorphic to (JacX, j).

(ii) If X0 is not hyperelliptic, there is a curve X/k isomorphic to X0 over k, and a quadratic
character

ε : Gal(ksep/k) −−−→ {±1}
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such that the twisted abelian variety (A, a)ε is k-isomorphic to (JacX, j). The character ε is
trivial if and only if (A, a) is k-isomorphic to a Jacobian.

Thus, only case (i) occurs if g = 1 or g = 2, with all curves being elliptic or hyperelliptic.

1.2 Curves of genus 3
Assume now again g = 3. Let there be given an indecomposable principally polarized abelian
threefold (A, a) defined over k. In a letter to J. Top [28], J.-P. Serre asked a twofold question:

— How to decide, knowing only (A, a), that X is hyperelliptic ?

— If X is not hyperelliptic, how to compute the quadratic character ε ?

Assume that k ⊂ C. The first question can easily be answered using the forms Σ140 and χ18. As
for the second question, roughly speaking, Serre suggested that ε is trivial if and only if χ18 is
a square in k× (see Th.4.1.2 for a more precise formulation). This assertion was motivated by a
formula of Klein [20] relating the modular form χ18 (in the notation of Igusa) to the square of the
discriminant of plane quartics, which more or less gives the ‘only if’ part of the claim. In [21], two
of the authors justified Serre’s assertion for a three dimensional family of abelian varieties and in
particular determined the absolute constant involved in Klein’s formula.
In this article we prove that Serre’s assertion is valid for any abelian threefold. In order to do so,
we start by taking a broader point of view, valid for any g > 1.

(i) We look at the action of k-isomorphisms on Siegel modular forms defined over k and we define
invariants of k-isomorphism classes of abelian varieties over k.

(ii) We link Siegel modular forms, Teichmüller modular forms and invariants of plane curves.

Once these two goals are achieved, Serre’s assertion can be rephrased as the following strategy

— use (ii) to find a Siegel modular form whose ‘values’ are a suitable power in k on the Jacobian
locus;

— use (i) to distinguish between Jacobians and their twists.

For g = 3, Klein’s formula shows that the form χ18 is a square on the Jacobian locus and that this
is enough to characterize this locus. On the other hand, we show that this is no longer the case for
the natural generalization χh, h = 2g−2(2g + 1), when g > 3.
The relevance of Klein’s formula in this problem was one of Serre’s insights. We would like to point
out that we do not actually need the full strength of Klein’s formula to work out our strategy.
Indeed, we do not go all the way from Siegel modular form to invariants. We use instead a formula
due to Ichikawa relating χ18 to the square of a Teichmüller modular form (see Rem.4.1.3). However
we think that the connection between Siegel modular forms and invariants is interesting enough in
its own, besides the fact that it gives a new proof of Klein’s formula.

The paper is organized as follows. In §2, we review the necessary elements from the theory of Siegel
and Teichmüller modular forms. Only §2.4 is original: we introduce the action of isomorphisms and
see how the action of twists is reflected on the values of modular forms. In §3, we link modular forms
and certain invariants of ternary forms. Finally in §4 we deal with the case g = 3. We give first
a proof of Klein’s formula and then we justify the validity of Serre’s assertion. Finally we explain
the reasons behind the failure of the obvious generalization of the theory in higher dimensions and
state some natural questions.
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2. Siegel and Teichmüller modular forms

2.1 Geometric Siegel modular forms
The references are [4], [5], [7], [10]. Let g > 1 and n > 0 be two integers and Ag,n be the moduli stack
of principally polarized abelian schemes of relative dimension g with symplectic level n structure.
Let π : Vg,n −→ Ag,n be the universal abelian scheme, fitted with the zero section ε : Ag,n −→ Vg,n,
and

π∗Ω1
Vg,n/Ag,n

= ε∗Ω1
Vg,n/Ag,n

−−−→ Ag,n

the rank g bundle induced by the relative regular differential forms of degree one on Vg,n over Ag,n.
The relative canonical bundle over Ag,n is the line bundle

ω =
g∧

ε∗Ω1
Vg,n/Ag,n

.

For a projective nonsingular variety X defined over a field k, we denote by

Ω1
k[X] = H0(X, Ω1

X ⊗ k)

the finite dimensional k-vector space of regular differential forms on X defined over k. Hence, the
fibre of the bundle Ω1

Vg,n/Ag,n
over A ∈ Ag,n(k) is equal to Ω1

k[A], and the fibre of ω is the one-
dimensional vector space

ω[A] =
g∧

Ω1
k[A].

We put Ag = Ag,1 and Vg = Vg,1. Let R be a commutative ring and h a positive integer. A geometric
Siegel modular form of genus g and weight h over R is an element of the R-module

Sg,h(R) = Γ(Ag ⊗R, ω⊗h).

Note that for any n > 1, we have an isomorphism

Ag ' Ag,n/Sp2g(Z/nZ).

If n > 3, as shown in [24], from the rigidity lemma of Serre [27] we can deduce that the moduli
space Ag,n can be represented by a smooth scheme over Z[ζn, 1/n]. Hence, for any algebra R over
Z[ζn, 1/n], the module Sg,h(R) is the submodule of

Γ(Ag,n ⊗Z[ζn,1/n] R, ω⊗h)

consisting of the elements invariant under Sp2g(Z/nZ).
Assume now that R = k is a field. If f ∈ Sg,h(k), A is a p.p.a.v. of dimension g defined over k and
ω is a basis of ωk[A], define

f(A,α) = f(A)/ω⊗h. (1)

In this way such a modular form defines a rule which assigns the element f(A,ω) ∈ k to every such
pair (A,ω) and such that:

(i) f(A, λω) = λ−hf(A,ω) for any λ ∈ k×.

(ii) f(A, ω) depends only on the k-isomorphism class of the pair (A,ω).
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Conversely, such a rule defines a unique f ∈ Sg,h(k). This definition is a straightforward generaliza-
tion of that of Deligne-Serre [6] and Katz [19] if g = 1.

2.2 Complex uniformisation
Assume R = C. Let

Hg =
{
τ ∈ Mg(C) | tτ = τ, Im τ > 0

}

be the Siegel upper half space of genus g and Γ = Sp2g(Z). As explained in [4, §2], The complex
orbifold Ag(C) can be expressed as the quotient Γ\Hg where Γ acts by

M.τ = (aτ + b) · (cτ + d)−1 if M =
(

a b
c d

)
∈ Γ.

The group Z2g acts on Hg × Cg by

v.(τ, z) = (τ, z + τm + n) if v =
(

m
n

)
∈ Z2g.

If Ug = Z2g\(Hg × Cg), the projection

π : Ug −−−→ Hg

defines a universal principally polarized abelian variety with fibres

Aτ = π−1(τ) = Cg/(Zg + τZg).

Let j(M, τ) = cτ + d and define the action of Γ on Hg × Cg by

M.(τ, (z1, . . . , zg)) = (M.τ, tj(M, τ)−1 · (z1, . . . , zg)) if M ∈ Γ.

The map tj(M, τ)−1 : Cg → Cg induces an isomorphism:

ϕM : Aτ −−−→ AM.τ .

Hence, Vg(C) ' Γ\Ug and the following diagram is commutative:

Γ\Ug
∼−−−→ Vg(C)

π

y π

y
Γ\Hg

∼−−−→ Ag(C)

As in [7, p. 141], let

ζ =
dq1

q1
∧ . . . ∧ dqg

qg
= (2iπ)gdz1 ∧ · · · ∧ dzg ∈ Γ(Hg, ω)

with (zi, . . . , zg) ∈ Cg and (qi, . . . , qg) = (e2iπz1 , . . . e2iπzg). This section of the canonical bundle is a
basis of ω[Aτ ] for all τ ∈ Hg and the relative canonical bundle of Ug/Hg is trivialized by ζ :

ωUg/Hg
=

g∧
Ω1
Ug/Hg

' Hg × C · ζ.

The group Γ acts on ωUg/Hg
by

M.(τ, ζ) = (M.τ,det j(M, τ) · ζ) if M ∈ Γ,

in such a way that
ϕ∗M (ζM.τ ) = det j(M, τ)−1ζτ .

Thus, a geometric Siegel modular form f of weight h becomes an expression

f(Aτ ) = f̃(τ) · ζ⊗h,
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where f̃ belongs to the well-known vector space Rg,h(C) of analytic Siegel modular forms of weight
h on Hg, consisting of complex holomorphic functions φ(τ) on Hg satisfying

φ(M.τ) = det j(M.τ)hφ(τ)

for any M ∈ Sp2g(Z). Note that by Koecher principle [10, p. 11], the condition of holomorphy at
∞ is automatically satisfied since g > 1. The converse is also true [7, p. 141]:

Proposition 2.2.1. If f ∈ Sg,h(C) and τ ∈ Hg, let

f̃(τ) = f(Aτ )/ζ⊗h = (2iπ)−ghf(Aτ )/(dz1 ∧ · · · ∧ dzg)⊗h.

Then the map f 7→ f̃ is an isomorphism Sg,h(C) ∼−→Rg,h(C).

2.3 Teichmüller modular forms

Let g > 1 and n > 0 be positive integers and let Mg,n denote the moduli stack of smooth and proper
curves of genus g with symplectic level n structure [5]. Let π : Cg,n −→ Mg,n be the universal curve,
and let λ be the invertible sheaf associated to the Hodge bundle, namely

λ =
g∧

π∗Ω1
Cg,n/Mg,n

.

For an algebraically closed field k the fibre over C ∈ Mg,n(k) is the one dimensional vector space
λ[C] =

∧g Ω1
k[C].

Let R be a commutative ring and h a positive integer. A Teichmüller modular form of genus g and
weight h over R is an element of

Tg,h(R) = Γ(Mg ⊗R, λ⊗h).

These forms have been thoroughly studied by Ichikawa [13], [14], [15], [16]. As in the case of the
moduli space of abelian varieties, for any n > 1 we have

Mg ' Mg,n/Sp2g(Z/nZ),

and Mg,n can be represented by a smooth scheme over Z[ζn, 1/n] if n > 3. Then, for any algebra R
over Z[ζn, 1/n], the module Tg,h(R) is the submodule of

Γ(Mg,n ⊗Z[ζn,1/n] R, λ⊗h)

invariant under Sp2g(Z/nZ).
Let C/k be a genus g curve. Let λ1, . . . , λg be a basis of Ω1

k[C] and λ = λ1 ∧ . . .∧λg a basis of λ[C].
As for Siegel modular forms in (1), for a Teichmüller modular form f ∈ Tg,h(k) we define

f(C, λ) = f(C)/λ⊗h ∈ k.

Ichikawa asserts the following proposition:

Proposition 2.3.1. The Torelli map θ : Mg −→ Ag, associating to a curve C its Jacobian JacC
with the canonical polarization j, satisfies θ∗ω = λ, and induces for any commutative ring R a
linear map

θ∗ : Sg,h(R) = Γ(Ag ⊗R, ω⊗h) −−−→ Tg,h(R) = Γ(Mg ⊗R, λ⊗h),

such that [θ∗f ](C) = θ∗[f(JacC)]. Fixing a basis λ of λ[C], this is

f(JacC, ω) = [θ∗f ](C, λ) if θ∗ω = λ.
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2.4 Action of isomorphisms
Suppose φ : (A′, a′) −→ (A, a) is a k-isomorphism of principally polarized abelian varieties. Let
ω1, . . . , ωg ∈ Ω1

k[A] and ω = ω1 ∧ . . . ∧ ωg ∈ ω[A]. Then by definition

f(A,ω) = f(A′, γ)

where γi = φ∗(ωi) is a basis of Ω1
k[A

′] and γ = γ1 ∧ . . . ∧ γg ∈ ω[A′]. If ω′1, . . . , ω
′
g is another basis

of Ω1
k[A

′] and ω′ = ω′1 ∧ . . . ∧ ω′g, we denote by Mφ ∈ GLg(k) the matrix of the basis (γi) in the
basis (ω′i). We can easily see that

Proposition 2.4.1. In the above notation,

f(A,ω) = det(Mφ)h · f(A′, ω′).

First of all, from this formula applied to the action of −1, we deduce that, if k is a field of charac-
teristic different from 2, then Sg,h(k) = {0} if gh is odd. From now on we assume that gh is even
and chark 6= 2.

Corollary 2.4.2. Let (A, a) be a principally polarized abelian variety of dimension g defined over
k and f ∈ Sg,h(k). Let ω1, . . . , ωg be a basis of Ω1

k[A], and let ω = ω1 ∧ . . . ∧ ωg ∈ ω[A]. Then the
quantity

f̄(A) = f(A, ω) mod× k×h ∈ k/k×h

does not depend on the choice of the basis of Ω1
k[A]. In particular f̄(A) is an invariant of the

k-isomorphism class of A.

Corollary 2.4.3. Assume that g is odd. Let f ∈ Sg,h(k) and φ : A′ −→ A a non trivial quadratic
twist. There exists c ∈ k \ k2 such that f̄(A) = ch/2f̄(A′). Thus, if f̄(A) 6= 0 then f̄(A) and f̄(A′)
do not belong to the same class in k×/k×h.

Proof. Assume that φ is given by the quadratic character ε of Gal(k/k). Then

dσ = ε(σ)g · d, where d = det(Mφ) ∈ k, σ ∈ Gal(k/k).

Assume that g is odd. Then by our assumption h is even, and d2 = ε(σ)gddσ ∈ k. But d /∈ k since
there exists σ such that ε(σ) = −1. Using Prop.2.4.1 we find that

f(A,ω) = (d2)h/2f(A′, ω′).

Since d2 is not a square in k, if f̄(A) 6= 0 then f̄(A) and f̄(A′) belong to two different classes.

Let now (A, a) be a principally polarized abelian variety of dimension g defined over C. Let ω1, . . . , ωg

be a basis of Ω1
C[A] and ω = ω1 ∧ . . . ∧ ωg ∈ ω[A]. Let γ1, . . . γ2g be a symplectic basis (for the

polarization a). The period matrix

Ω = [Ω1 Ω2] =




∫
γ1

ω1 · · · ∫
γ2g

ω1

...
...∫

γ1
ωg · · · ∫

γ2g
ωg




belongs to the set Rg ⊂ Mg,2g(C) of Riemann matrices, and τ = Ω−1
2 Ω1 ∈ Hg.

Proposition 2.4.4. In the above notation,

f(A,ω) = (2iπ)gh f̃(τ)
detΩh

2

.
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Proof. The abelian variety A is isomorphic to AΩ = Cg/ΩZ2g and ω ∈ ω[A] maps to ξ = dz1 ∧ · · · ∧
dzg ∈ ω[AΩ] under this isomorphism. The linear map z 7→ Ω−1

2 z = z′ induces the isomorphism

ϕ : AΩ −−−→ Aτ = Cg/(Zg + τZg).

Let us denote ξ′ = dz′1 ∧ · · · ∧ dz′g = (2iπ)−gζ in ω[Aτ ]. Thus, using Prop.2.4.1, Equation (1) and
Prop.2.2.1, we obtain

f(A,ω) = f(AΩ, ξ) = det Ω−h
2 f(Aτ , ξ

′)

= det Ω−h
2 f(Aτ )/ξ′⊗h = (2iπ)gh detΩ−h

2 f(τ)/ζ⊗h = (2iπ)gh f̃(τ)
detΩh

2

,

from which the proposition follows.

3. Invariants and modular forms

In this section k is an algebraically closed field of characteristic different from 2.

3.1 Invariants
We review some classical invariant theory. Let E be a vector space of dimension n over k. The left
regular representation r of GL(E) on the vector space Xd = Symd(E∗) of homogeneous polynomials
of degree d on E is given by

r(u) : F (x) 7→ (u · F )(x) = F (ux)

for u ∈ GL(E), F ∈ Xd and x ∈ E. If U is an open subset of Xd stable under r, we still denote by r
the left regular representation of GL(E) on the k-algebra O(U) of regular functions on U , in such
a way that

r(u) : Φ(F ) 7→ (u · Φ)(F ) = Φ(u · F ),
if u ∈ GL(E), Φ ∈ O(U) and F ∈ U . If h ∈ Z, we denote by Oh(U) the subspace of homogeneous
elements of degree h, satisfying Φ(λF ) = λhΦ(F ) for λ ∈ k× and F ∈ U . The subspaces Oh(U) are
stable under r. An element Φ ∈ Oh(U) is an invariant of degree h on U if

u · Φ = Φ for every u ∈ SL(E),

and we denote by Invh(U) the subspace of Oh(U) of invariants of degree h on U . If Invh(U) 6= {0},
then hd ≡ 0 (mod n), since the group µn of n-th roots of unity is in the kernel of r. Hence,
if Φ ∈ O(U), and if w and n are two integers such that hd = nw, the following statements are
equivalent:

(i) Φ ∈ Invh(U);
(ii) u · Φ = (detu)wΦ for every u ∈ GL(E).

If these conditions are satisfied, we call w the weight of Φ.
The multivariate resultant Res(f1, . . . , fn) of n forms f1, . . . fn in n variables with coefficients in k
is an irreducible polynomial in the coefficients of f1, . . . fn which vanishes whenever f1, . . . fn have a
common non-zero root. One requires that the resultant is irreducible over Z, i. e. it has coefficients
in Z with greatest common divisor equal to 1, and moreover

Res(xd1
1 , . . . , xdn

n ) = 1

for any (d1, . . . , dn) ∈ Nn. The resultant exists and is unique. Now, let F ∈ Xd, and denote q1, . . . , qn

the partial derivatives of F . The discriminant of F is

DiscF = c−1
n,d Res(q1, . . . , qn), with cn,d = d((d−1)n−(−1)n)/d,
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the coefficient cn,d being chosen according to [28]. Hence, the projective hypersurface which is the
zero locus of F ∈ Xd is nonsingular if and only if DiscF 6= 0. The discriminant is an irreducible
polynomial in the coefficients of F , see for instance [8, Chap. 9, Ex. 1.6(a)]. From now on we restrict
ourselves to the case n = 3, i. e. we consider invariants of ternary forms of degree d, and summarize
the results that we shall need.

Proposition 3.1.1. If F ∈ Xd is a ternary form, the discriminant

DiscF = d−(d−1)(d−2)−1 ·Res(q1, q2, q3)

where q1, q2, q3 are the partial derivatives of F , is given by an irreducible polynomial over Z in
the coefficients of F , and vanishes if and only if the plane curve CF defined by F is singular. The
discriminant is an invariant of Xd of degree 3(d− 1)2 and weight d(d− 1)2.

We refer to [8, p. 118] and [21] for an explicit formula for the discriminant, found by Sylvester.

Example 3.1.2 Ciani quartics. We recall some results whose proofs are given in [21]. Let

m =




a1 b3 b2

b3 a2 b1

b2 b1 a3


 ∈ Sym3(k),

and for 1 6 i 6 3, let ci = ajak − b2
i be the cofactor of ai. If

det(m) 6= 0, a1a2a3 6= 0 and c1c2c3 6= 0

then
Fm(x, y, z) = a1x

4 + a2y
4 + a3z

4 + 2(b1y
2z2 + b2x

2z2 + b3x
2y2)

defines a non singular plane quartic. Moreover

DiscFm = 240 a1 a2 a3 (c1 c2 c3)2 det(m)4.

Note that the discrepancy between the powers of 2 here and in [21, Prop.2.2.1] comes from the
normalization by cn,d.

3.2 Geometric invariants for nonsingular plane curves
Let E be a vector space of dimension 3 over k and G = GL(E). The universal curve over the affine
space Xd = Symd(E) is the variety

Yd =
{
(F, x) ∈ Xd × P2 | F (x) = 0

}
.

The nonsingular locus of Xd is the principal open set

X0
d = (Xd)Disc = {F ∈ Xd | Disc(F ) 6= 0} .

If Y0
d is the universal curve over the nonsingular locus X0

d, the projection is a smooth surjective
k-morphism

π : Y0
d −−−→ X0

d

whose fibre over F is the non singular plane curve CF .
We recall the classical way to write down an explicit k-basis of Ω1[CF ] = H0(CF , Ω1) for F ∈ X0

d(k)
(see [3, p. 630]). Let

η1 =
f(x2dx3 − x3dx2)

q1
, η2 =

f(x3dx1 − x1dx3)
q2

, η3 =
f(x1dx2 − x2dx1)

q3
,

where q1, q2, q3 are the partial derivatives of F , and where f belongs to the space Xd−3 of ternary
forms of degree d − 3. The forms ηi glue together and define a regular differential form ηf (F ) ∈
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Ω1[CF ]. Since dim Xd−3 = (d− 1)(d− 2)/2 = g, the linear map f 7→ ηf (F ) defines an isomorphism

Xd−3
∼−−−→ Ω1[CF ].

This implies that the sections ηf ∈ Γ(X0
d, π∗Ω

1
Y0

d/X0
d
) lead to a trivialization

X0
d × Xd−3

∼−−−→ π∗Ω1
Y0

d/X0
d
.

We denote η1, . . . , ηg the sequence of sections obtained by substituting for f in ηf the g members
of the canonical basis of Xd−3, enumerated according to the lexicographic order. Then

η = η1 ∧ . . . ∧ ηg

is a section of

α =
g∧

π∗Ω1
Y0

d/X0
d
,

the Hodge bundle of the universal curve over X0
d.

Since the map u : x 7→ ux induces an isomorphism

u : Cu·F
∼−−−→ CF

it has a natural action u∗ : Ω1[CF ] → Ω1[Cu·F ] on the differentials and hence, on the sections of
αh, for h ∈ Z. More specifically, if s ∈ Γ(X0

d, α
⊗h), one can write s = Φ · η⊗h with Φ ∈ O(X0

d) ; for
F ∈ X0

d, one has
u∗s(F ) = Φ(F ) · (u∗η(F ))⊗h.

Lemma 3.2.1. The section η ∈ Γ(X0
d, α) satisfies for u ∈ G and F ∈ X0

d, then

u∗η(F ) = det(u)w0 · η(u · F ), with w0 =
(

d

3

)
=

dg

3
∈ N.

Proof. Since dimα[F ] = dimα[u · F ] = 1, there is c(u, F ) ∈ k× such that

u∗η(F ) = c(u, F ) · η(u · F ).

and c is a “crossed character”, satisfying

c(uu′, F ) = c(u, F ) c(u′, u · F ).

Now the regular function F 7→ c(u, F ) does not vanishes on X0
d. By Lemma 3.2.2 below and the

irreducibility of the discriminant (Prop. 3.1.1), we have

c(u, F ) = χ(u)(DiscF )n(u)

with χ(u) ∈ k× and n(u) ∈ Z. The group G being connected, the function n(u) = n is constant. Since
c(I3, F ) = 1, we have (DiscF )n = χ(I3)−1, and this implies n = 0. Hence, c(u, F ) is independent of
F and χ is a character of G. Since the group of commutators of G is SL3(k), we have

χ(u) = det(u)w0

for some w0 ∈ Z. It is therefore enough to compute χ(u) when u = λI3, with λ ∈ k×. In this case
u · F = λdF . Moreover, for all f ∈ Xd−3, since the section ηf is homogeneous of degree −1

ηf (λdF ) = λ−d · ηf (F ), and η(λdF ) = λ−dg · η(F ).

Hence, as u is the identity on the curve CF = Cu·F ,

u∗η(F ) = η(F ) = λdg · η(u · F ) = det(u)w0 · η(u · F ).

This implies
det(u)w0 = λ3w0 = λdg,

9
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and the result is proven.

We made use of the following elementary lemma:

Lemma 3.2.2. Let f ∈ k[T1, . . . , Tn] be irreducible and let g ∈ k(T1, . . . , Tn) be a rational function
which has neither zeroes nor poles outside the set of zeroes of f. Then there is an m ∈ Z and c ∈ k×

such that g = cfm.

Proof. This is an immediate consequence of Hilbert’s Nullstellensatz, together with the fact that
the ring k[T1, . . . , Tn] is factorial.

For any h ∈ Z, we denote by Γ(X0
d, α

⊗h)G the subspace of sections s ∈ Γ(X0
d, α

⊗h) such that

u∗s(F ) = s(u · F ) for every u ∈ G,F ∈ X0
d.

Proposition 3.2.3. Let h > 0 be an integer. The linear map

Φ 7→ ρ(Φ) = Φ · η⊗h

is an isomorphism

ρ : Invgh(X0
d)

∼−−−→ Γ(X0
d, α

⊗h)G.

Proof. Let Φ ∈ Invgh(X0
d), s = ρ(Φ) = Φ · η⊗h, and w = dgh/3, the weight of Φ. Then using

Lem.3.2.1,

u∗s(F ) = Φ(F ) · (u∗η(F ))⊗h

= Φ(F ) · det(u)w0h · η(u · F )⊗h

= det(u)wΦ(F ) · η(u · F )⊗h

= Φ(u · F ) · η(u · F )⊗h = s(u · F ).

Hence, ρ(Φ) ∈ Γ(X0
d, λ

⊗h)G. Conversely, the inverse of ρ is the map s 7→ s/η⊗h, and this proves the
proposition.

3.3 Modular forms as invariants
Let d > 2 be an integer and g =

(
d
2

)
. Since the fibres of Y0

d −→ X0
d are nonsingular non hyperelliptic

plane curves of genus g, by the universal property of Mg we get a morphism

p : X0
g −−−→ M0

g,

where M0
g is the moduli stack of nonhyperelliptic curves of genus g and p∗λ = α by construction.

This induces a morphism

p∗ : Γ(M0
g, λ

⊗h) −−−→ Γ(X0
d, α

⊗h).
Moreover, for u ∈ G, since u : Cu·F → CF is an isomorphism, we get the following commutative
diagram

λ[CF ] u∗−−−→ λ[Cu·F ]

p∗
y p∗

y
α[F ] u∗−−−→ α[u · F ].

For any f ∈ Γ(M0
g, λ

⊗h), the modular invariance of f means that

u∗f(CF ) = f(Cu·F ).

Then
u∗[(p∗f)(F )] = u∗[p∗(f(CF ))] = p∗[u∗f(CF )] = p∗[f(Cu·F )] = (p∗f)(u · F ),

10
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and this means that p∗f ∈ Γ(X0
d, α

⊗h)G. Combining this result with Prop.3.2.3, we obtain:

Proposition 3.3.1. For any integer h > 0, the linear map σ = ρ−1 ◦ p∗ is a homomorphism:

Γ(M0
g, λ

⊗h) −−−→ Invgh(X0
d)

such that

σ(f)(F ) = f(CF , λ)
with λ = (p∗)−1η, for any F ∈ X0

d and any section f ∈ Γ(M0
g, λ

⊗h).

We finally make a link between invariants and analytic Siegel modular forms. Let F ∈ X0
d(C) and let

η1, . . . , ηg be the basis of regular differentials on CF defined in Sec.3.2. Let γ1, . . . γ2g be a symplectic
basis of H1(C,Z) (for the intersection pairing). The matrix

Ω = [Ω1 Ω2] =




∫
γ1

η1 · · · ∫
γ2g

η1

...
...∫

γ1
ηg · · · ∫

γ2g
ηg




belongs to the set Rg ⊂ Mg,2g(C) of Riemann matrices, and τ = Ω−1
2 Ω1 ∈ Hg.

Corollary 3.3.2. Let f ∈ Sg,h(C) be a geometric Siegel modular form, f̃ ∈ Rg,h(C) the cor-
responding analytic modular form, and Φ = σ(θ∗f) the corresponding invariant. In the above
notation,

Φ(F ) = (2iπ)gh f̃(τ)
detΩh

2

.

Proof. Let λ = (p∗)−1(η) and ω = (θ∗)−1(λ). From Prop.2.3.1 and 3.3.1, we deduce

Φ(F ) = (θ∗f)(CF , λ) = f(JacCF , ω).

On the other hand, by the canonical identifications

Ω1[CF ] = Ω1[JacCF ], H1(CF ,Z) = H1(JacCF ,Z)

and Prop.2.4.4 we get

f(JacCF , ω) = (2iπ)gh f̃(τ)
det Ωh

2

,

from which the result follows.

4. The case of genus 3

4.1 Klein’s formula
We recall the definition of theta functions with (entire) characteristics

[ε] =
[

ε1

ε2

]
∈ Zg ⊕ Zg,

following [2]. The (classical) theta function is given, for τ ∈ Hg and z ∈ Cg, by

θ

[
ε1

ε2

]
(z, τ) =

∑

n∈Zg

q(n+ε1/2)τ(n+ε1/2)+2(n+ε1/2)(z+ε2/2).

The Thetanullwerte are the values at z = 0 of these functions, and we write

θ[ε](τ) = θ

[
ε1

ε2

]
(τ) = θ

[
ε1

ε2

]
(0, τ).

11
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Recall that a characteristic is even if ε1 · ε2 ≡ 0 (mod 2) and odd otherwise. Let Sg (resp. Ug) be
the set of even characteristics with coefficients in {0, 1}. For g > 2, we put h = #Sg/2 = 2g−2(2g +1)
and

χ̃h(τ) = (2iπ)gh
∏

ε∈Sg

θ[ε](τ).

In his beautiful paper [17], Igusa proves the following result [loc. cit., Lem. 10 and 11]. Denote by
Σ̃140 the modular form defined by the thirty-fifth elementary symmetric function of the eighth power
of the even Thetanullwerte. Recall that a principally polarized abelian variety (A, a) is decomposable
if it is a product of principally polarized abelian varieties of lower dimension, and indecomposable
otherwise.

Theorem 4.1.1. If g > 3, then χ̃h(τ) ∈ Rg,h(C). Moreover, If g = 3 and τ ∈ H3, then:

(i) Aτ is decomposable if χ̃18(τ) = Σ̃140(τ) = 0.

(ii) Aτ is a hyperelliptic Jacobian if χ̃18(τ) = 0 and Σ̃140(τ) 6= 0.

(iii) Aτ is a non hyperelliptic Jacobian if χ̃18(τ) 6= 0.

Using Prop. 2.2.1, we define the geometric Siegel modular form of weight h

χh(Aτ ) = (2iπ)gh χ̃h(τ)(dz1 ∧ · · · ∧ dzg)⊗h.

Ichikawa [15], [16] proved that χh ∈ Sg,h(Q). For g = 3, one finds

χ18(Aτ ) = −(2π)54 χ̃18(τ)(dz1 ∧ dz2 ∧ dz3)⊗18.

Now we are ready to give a proof of the following result [20, Eq. 118, p. 462]:

Theorem 4.1.2 Klein’s formula. Let F ∈ X0
4(C) and CF be the corresponding smooth plane quartic.

Let η1, η2, η3 be the classical basis of Ω1[CF ] from Sec.3.2 and γ1, . . . γ6 be a symplectic basis of
H1(CF ,Z) for the intersection pairing. Let

Ω = [Ω1 Ω2] =




∫
γ1

η1 · · · ∫
γ6

η1

...
...∫

γ1
η3 · · · ∫

γ6
η3




be a period matrix of Jac(C) and τ = Ω−1
2 Ω1 ∈ H3. Then

Disc(F )2 =
1

228
(2π)54 χ̃18(τ)

det(Ω2)18
.

Proof. Cor.3.3.2 shows that I = σ ◦ θ∗(χ18)satisfies for any F ∈ X0
4,

I(F ) = −(2π)54 χ̃18(τ)
detΩ18

2

.

Moreover Th. 4.1.1 (iii) shows that I(F ) 6= 0 for all F ∈ X0
4. Thus I is a non-zero invariant of weight

54. Applying Lem. 3.2.2 for the discriminant, we find by comparison of the weights that I = cDisc2

with c ∈ C a constant. But if Fm is the Ciani quartic associated to a matrix m ∈ Sym3(k) as in
Example 3.1.2, it is proven in [21, Cor. 4.2] that Klein’s formula is true for Fm and c = −228.

Remark 4.1.3. The morphism θ∗ defines an injective morphism of graded k-algebras

S3(k) = ⊕h>0S3,h(k) −−−→ T3(k) = ⊕h>0T3,h(k).

In [14], Ichikawa proves that if k is a field of characteristic 0, then T3(k) is generated by the image
of S3(k) and a primitive Teichmüller form µ3,9 ∈ T3,9(Z) of weight 9, which is not of Siegel modular

12
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type. He also proves in [16] that

θ∗(χ18) = −228 · (µ3,9)2. (2)

Th. 4.1.2 implies that µ3,9 is actually equal to the discriminant up to a sign. This might probably
be deduced from the definition of µ3,9, although we did not sort it out (see also [18, Sec. 2.4]).

Remark 4.1.4. Besides [23] and [11] where an analogue of Klein’s formula is derived in the hyperel-
liptic case, there exists a beautiful algebraic Klein’s formula, linking the discriminant with irrational
invariants [9, Th.11.1].

4.2 Jacobians among abelian threefolds
Let k ⊂ C be a field and let g = 3. We prove the following theorem which allows us to determine
whether a given abelian threefold defined over k is k-isomorphic to a Jacobian of a curve defined
over the same field. This settles the question of Serre recalled in the introduction.

Theorem 4.2.1. Let (A, a) be a principally polarized abelian threefold defined over k ⊂ C. Let
ω1, ω2, ω3 be a basis of Ω1

k[A] and γ1, . . . γ6 a symplectic basis of H1(A,Z), in such a way that

Ω = [Ω1 Ω2] =




∫
γ1

ω1 · · · ∫
γ6

ω1

...
...∫

γ1
ω3 · · · ∫

γ6
ω3




is a period matrix of (A, a). Put τ = Ω−1
2 Ω1 ∈ H3.

(i) If Σ̃140(τ) = 0 then (A, λ) is decomposable. In particular it is not a Jacobian.

(ii) If Σ̃140(τ) 6= 0 and χ̃18(τ) = 0 then there exists a hyperelliptic curve X/k such that (JacX, j) '
(A, a).

(iii) If χ̃18(τ) 6= 0 then (A, a) is isomorphic to a Jacobian if and only if

−χ18(A,ω1 ∧ ω2 ∧ ω3) = (2π)54 χ̃18(τ)
det(Ω2)18

is a square in k.

Proof. The first and second points follow from Th.4.1.1 and Th.1.1.1. Suppose now that (A, a) is
isomorphic over k to the Jacobian of a non hyperelliptic genus 3 curve C/k and let ω = ω1∧ω2∧ω3.
Using Prop.2.3.1, we get

−χ18(A,ω) = θ∗(−χ18)(C, λ)

with λ = θ∗ω. The left hand side is (Prop.2.4.4)

−χ18(A,ω) = −(2iπ)54 χ̃18

det(Ω2)18
= (2π)54 χ̃18(τ)

det(Ω2)18
.

According to Rem.4.1.3, the right hand side of the equality is

θ∗(−χ18)(C, λ) = 228 · µ2
3,9(C, λ) = (214 · µ3,9(C, λ))2

so the desired expression is a square in k. On the contrary, Cor.2.4.3 shows that if (A, a) is a
quadratic twist of a Jacobian (A′, a′) then there exists a non square c ∈ k such that

−χ̄18(A) = c9 · (−χ̄18(A′)).

As we have just proved that−χ̄18(A′) is a non-zero square in k/k×18,−χ̄18(A) (and then−χ18(A,ω))
is not.

13
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Corollary 4.2.2. In the notation of Th.4.2.1, the quadratic character ε of Gal(ksep/k) introduced
in Theorem 1.1.1 is given by ε(σ) = d/dσ, where

d =

√
(2π)54

χ̃18(τ)
det(Ω2)18

,

with an arbitrary choice of the square root.

4.3 Beyond genus 3
It is natural to try to extend our results to the case g > 3. The first question to ask is

— Does there exist an analogue of Klein’s formula for g > 3 ?

Here we can give a partial answer. Using Sec.2.3, we can consider the Teichmüller modular form
θ∗(χh) with h = 2g−2(2g +1). In [16, Prop.4.5] (see also [29]), it is proven that for g > 3 the element

θ∗(χh)/22g−1(2g−1)

has as a square root a primitive element µg,h/2 ∈ Tg,h/2(Z). If g = 4, in the footnote, p. 462 in [20]
we find the following amazing formula

χ̃68(τ)
det(Ω2)68

= c ·∆(X)2 · T (X)8. (3)

Here τ = Ω−1
2 Ω1, with Ω = [Ω1 Ω2] a period matrix of a genus 4 non hyperelliptic curve X given

in P3 as an intersection of a quadric Q and a cubic surface E. The elements ∆(X) and T (X) are
defined in the classical invariant theory as, respectively, the discriminant of Q and the tact invariant
of Q and E (see [26, p.122]). No such formula seems to be known in the non hyperelliptic case for
g > 4.
Let us now look at what happens when we try to apply Serre’s approach for g > 3. To begin
with, when g is even, we cannot use Cor.2.4.2 to distinguish between quadratic twists. In particular,
using the previous result, we see that χh(A,ωk) is a square when A is a principally polarized abelian
variety defined over k which is geometrically a Jacobian. A natural question is:

— What is the relation between this condition and the locus of geometric Jacobians over k?

Let us assume now that g is odd. Corollary 2.4.3 shows that there exists c ∈ k \ k2 such that

χh(A′) = ch/2 · χh(A)

for a Jacobian A and a quadratic twist A′. What enabled us to distinguish between A and A′ when
g = 3 is that h/2 = 9 is odd. However as soon as g > 3, 2 | 2g−3, the power g− 3 being the maximal
power of 2 dividing h/2, so it is not enough for χ̄18(A) to be a square in k to make a distinction
between A and A′. It must rather be an element of k2g−2

. It can be easily seen from the proof of [29,
Th.1] that θ∗(χh) does not admit a fourth root. According to [1] or [30] this implies χh(A) /∈ k2g−2

for infinitely many Jacobians A defined over number fields k. So we can no longer use the modular
form χh to easily characterize Jacobians over k. The question is:

— Is it possible to find a modular form to replace χh in our strategy when g > 3 ?
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