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Abstract. In this paper we study asymptotic properties of families of zeta

and L-functions over finite fields. We do it in the context of three main prob-

lems: the basic inequality, the Brauer–Siegel type results and the results on
distribution of zeroes. We generalize to this abstract setting the results of

Tsfasman, Vlăduţ and Lachaud, who studied similar problems for curves and

(in some cases) for varieties over finite fields. In the classical case of zeta
functions of curves we extend a result of Ihara on the limit behaviour of the

Euler–Kronecker constant. Our results also apply to L-functions of elliptic
surfaces over finite fields, where we approach the Brauer–Siegel type conjec-

tures recently made by Kunyavskii, Tsfasman and Hindry. In addition, in this

case we manage to generalize a zero distribution result due to Michel.

1. Introduction

The study of asymptotic properties of zeta functions of curves over finite fields
was initiated by Tsfasman and Vlăduţ who had the so called Drinfeld – Vlăduţ
inequality for the asymptotic number of points on curves over finite fields as initial
motivation ([DV], [Tsf]). This work went far beyond this initial inequality and led
to the introduction of the concept of limit zeta function which turned out to be
very useful [TV97]. It also had quite numerous applications to coding theory (see,
for example, the book [TVN] for some of them).

The above study of limit zeta functions involves three main topics:
(1) The basic inequality, which can be regarded as a rather far reaching gener-

alization of the Drinfeld – Vlăduţ inequality;
(2) Brauer–Siegel type results, in which the asymptotic properties of special

values of zeta functions (such as the order of the Picard group) are studied;
(3) The distribution of zeroes of zeta functions in families.

There are at least two main directions in the further study of these topics. First,
one may ask what are the number field counterparts of these results (for number
fields and function fields are regarded by many as facets of a single gemstone).
The translation of these results to the number field case is the subject of the paper
[TV02]. The techniques turns out to be very analytically involved but the reward is
no doubts significant as the authors managed to resolve some of the long standing
problems (such as the generalization of the Brauer–Siegel theorem to an asymp-
totically good case) as well as to improve several difficult results (Odlyzko–Serre
inequalities for the discriminant, Zimmert’s bound for regulators).

Second, one may ask what happens with higher dimensional varieties over finite
fields. Here the answers are less complete. The first topic (main inequalities) was
extensively studied in [LT]. The results obtained there are fairly complete, though
they do not directly apply to L-functions (such as L-functions of elliptic curves over
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function fields). The second topic is considerably less developed though it received a
particular attention in the recent years in the case of elliptic surfaces [HP], [KT] and
in the case of zeta functions of varieties over finite fields [Z]. The results concerning
the third topic seem to be even scarcer. One can cite a paper by Michel [Mi] where
the case of elliptic curves over Fq(t) is treated. Quite a considerable attention was
devoted to some finer questions related to the distribution of zeroes [KS]. However,
to our knowledge, not a single result of this type for asymptotically good families
of varieties is known.

The goal of our paper is to study the above three topic in the case of more
general zeta and L-functions. We take the axiomatic approach, defining a class
of L-functions to which our results may be applicable. This can be regarded as
the function field analogue of working with the Selberg class in characteristic zero,
though obviously the analytic contents in the function case is much less substantial
(and often times even negligible). In our investigations we devote more attention
to the second and the third topics as being far less developed then the first one. So,
while giving results on the generalizations of the basic inequality, we do not seek to
prove them in utmost generality (like in the paper [LT]). We hope that this allows
us to gain in clarity of the presentation as well as to save a considerable amount of
space.

We use families of elliptic curves over function fields as our motivating example.
After each general statement concerning any of the three topics we specify what
concrete results we get for curves and varieties over finite fields and elliptic curves
over function fields. In the study of the second topic we actually manage prove
something new even in the classical case of zeta functions of curves, namely we
prove a statement on the limit behaviour of zeta functions of which the Brauer–
Siegel theorem from [TV97] is a particular case (see theorem 5.2 and corollary 5.4).
We also reprove and extend some of the Ihara’s results on Euler–Kronecker constant
of function fields [Ih] incorporating them in the same general framework of limit
zeta functions (see corollary 5.5). Our statements about the distribution of zeroes
(theorem 6.1 and corollary 6.4) imply in the case of elliptic curves over function
fields a generalization of a result due to Michel [Mi] (however, unlike us, Michel
also provides an estimate for the error term).

Here is the plan of our paper. In section 2 we present the axiomatic framework
for zeta and L-functions with which we will be working, then we prove an explicit
formula for them. In the end of the section we introduce several particular examples
coming from algebraic geometry (zeta functions of curves, zeta functions of varieties
over finite fields, L-functions of elliptic curves over function fields) to which we
will apply the general results. Each further section contains a subsection where
we show what the results on abstract zeta and L-functions give in these concrete
cases. In section 3 we outline the asymptotic approach to the study of zeta and
L-functions, introducing the notions of asymptotically exact and asymptotically
very exact families. Section 4 is devoted to the proof of several versions of the
basic inequality. The study of the Brauer–Siegel type results is undertaken in
section 5. In the same section we show how these results imply the formulae for
the asymptotic behaviour of the invariants of function fields generalizing the Euler–
Kronecker constant (corollary 5.5) and a certain bound towards the conjectures of
Kunyavskii, Tsfasman and Hindry (theorem 5.11). We prove the zero distribution
results in section 6. There we also give some applications to the distribution of
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zeroes and the growth of ranks in families of elliptic surfaces (corollaries 6.4 and
6.6). Finally, in section 7 we discuss some possible further development as well as
open questions.

Acknowledgements. I would like to thank my teachers Michael Tsfasman and
Serge Vlăduţ who taught me the asymptotic theory of global fields. The discussions
with them and their constant advises were of great value.

2. Zeta and L-functions

2.1. Definitions. Let us define the class L-functions we will be working with. Let
Fq be a finite field with q elements.

Definition 2.1. An L-function L(s) over a finite field Fq is a holomorphic function
in s such that for u = q−s the function L(u) = L(s) is a polynomial with real
coefficients, L(0) = 1 and all the roots of L(u) are on the circle of radius q−

d
2 for

some non-negative integer number d.

We will refer to the last condition in the definition as the Riemann hypothesis
for L(s) since it is the finite field analogue of the classical Riemann hypothesis for
the Riemann zeta function. The number d in the definition of an L-function will
be called its weight. We will also say that the degree g of the polynomial L(u) is
the degree of the L-function L(s) (it should not be confused with the degree of an
L-function in the analytic number theory, where it is taken to be the degree of the
polynomial in its Euler product).

The logarithm of an L-function has a Dirichlet series expansion

logL(s) =
∞∑
f=1

Λf
f
q−fs,

which converges for Re s > d
2 . For the opposite of the logarithmic derivative we get

the formula:

−L
′(s)
L(s)

=
∞∑
f=1

(Λf log q) q−fs = u
L′(u)
L(u)

log q.

There is a functional equation for L(s) of the form

(1) L(d− s) = ωq( d2−s)gL(s),

where g = degL(u) and ω = ±1 is the root number. This can be proven directly

as follows. Let L(u) =
g∏
i=1

(
1− u

ρi

)
. Then

L
(

1
uqd

)
=
∏
ρ

(
1− 1

ρuqd

)
=
∏
ρ

ρ · qdgug
∏
ρ

(
u

ρ̄
− 1
)

= ±q
dg
2 ug

∏
ρ

(
1− u

ρ

)
.

Here we used the fact that all coefficients of L(u) are real, so its complex roots
come in pairs ρ and ρ̄.

Definition 2.2. A zeta function ζ(s) over a finite field Fq is a product of L-
functions in powers ±1 :

ζ(s) =
d∏
k=0

Lk(s)wk ,

where wk ∈ {−1, 1}, Lk(s) is an L-function of weight k.
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For the logarithm of a zeta function we also have the Dirichlet series expansion:

log ζ(s) =
∞∑
f=1

Λf
f
q−fs

which is convergent for Re s > d
2 .

2.2. Explicit formulae. In this subsection we will derive the analogues of Weil
and Stark explicit formulae for our zeta and L-functions. The proofs of the Weil
explicit formula can be found in [Ser] for curves and in [LT] for varieties over finite
fields. An explicit formula for L-functions of elliptic surfaces is proven in [Bru]. In
our proof we will follow the latter exposition.

Recall that our main object of study is ζ(s) =
d∏
i=0

Li(s)wi a zeta function with

Li(s) given by

Li(s) =
gi∏
j=1

(
1− q−s

ρij

)
.

As before, we define Λf via the relation log ζ(s) =
∞∑
f=1

Λf
f q
−fs.

Proposition 2.1. Let v = (vf )f≥1 be a sequence of real numbers and let ψv(t) =
∞∑
f=1

vf t
f . Let ρv be the radius of convergence of the series for ψv(t). Assume that

|t| < q−d/2ρv, then

∞∑
f=1

Λfvf tf = −
d∑
i=0

wi

gi∑
j=1

ψv(qiρijt).

Proof. Let us prove this formula for L-functions. The formula for zeta functions
will follow by additivity.

The simplest is to work with L(u) =
g∏
j=1

(
1− u

ρ

)
. The coefficient of uf in

−uL′(u)/L(u) is seen to be
∑
ρ
ρ−f for f ≥ 1. From this we derive the equality:

∑
ρ

ρ−f = −Λf .

The map ρ 7→ (qdρ)−1 permutes the zeroes {ρ}, thus for any f ≥ 1 we have:

Sn =
∑
ρ

(qdρ)f = −Λf .

Multiplying the last identity by vf t
f and summing for f = 1, 2, . . . we get the

statement of the theorem. �

From this theorem one can easily get a more familiar version of the explicit
formula (like the one from [Ser] in the case of curves over finite fields).
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Corollary 2.2. Let L(s) be an L-function, with zeroes ρ = q−d/2eiθ, θ ∈ [−π, π].
Let f : [−π, π]→ C be an even trigonometric polynomial

f(θ) = v0 + 2
Y∑
n=1

vn cos(nθ).

Then we have the explicit formula:∑
θ

f(θ) = v0g − 2
Y∑
f=1

vfΛfq−
df
2 .

Proof. We put t = q−
d
2 in the above explicit formula and notice that the sum

over zeroes can be written using cos since all the non-real zeroes come in complex
conjugate pairs. �

In the next sections we will also make use of the so called Stark formula (which
borrows its name from its number field counterpart from [Sta]).

Proposition 2.3. For a zeta function ζ(s) we have:

1
log q

ζ ′(s)
ζ(s)

=
d∑
i=0

wi

gi∑
j=1

1
qsρij − 1

= −1
2

d∑
i=0

wigi +
1

log q

d∑
i=0

wi
∑

Li(θij)=0

1
s− θij

.

Proof. The first equality is a trivial consequence of the formulae expressing Li(u)
as polynomials in u.

The second equality follows from the following series expansion:
log q

ρ−1qs − 1
+

log q
2

= lim
T→∞

∑
qθ=ρ
|θ|≤T

1
s− θ

.

�

2.3. Examples. We have in mind three main types of examples: zeta functions of
curves over finite fields, zeta functions of varieties over finite fields and L-functions
of elliptic curves over function fields.

Example 2.1 (Curves over finite fields). Let X be an absolutely irreducible smooth
projective curve of genus g over the finite field Fq with q elements. Let Φf be the
number of points of degree f on X. The zeta function of X is defined for Re s > 1
as

ζX(s) =
∞∏
f=1

(1− q−fs)−Φf .

It is known that ζX(s) is a rational function in u = q−s. Moreover,

ζK(s) =

g∏
j=1

(
1− u

ρj

)(
1− u

ρ̄j

)
(1− u)(1− qu)

,

and |ρj | = q−
1
2 . It can easily be seen that in this case Λf = Nf (X) is the number

of points on X ⊗Fq Fqf over Fqf . A very important feature of this example which
will be lacking in general is that Λf ≥ 0 for all f.

Though ζX(s) is not an L-function, in all asymptotic considerations the denom-
inator will be irrelevant and it will behave as an L-function.
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This example will serve as a motivation in most of our subsequent considerations,
for most (but not all, see section 5) of the results we derive for general zeta and
L-functions are known in this setting.

Example 2.2 (Varieties over finite fields). Let X be a non-singular absolutely irre-
ducible projective variety of dimension n defined over a finite field Fq. Denote by |X|
the set of closed points of X. We put Xf = X⊗Fq Fqf and X̄ = X⊗Fq Fq. Let Φf be
the number of points of X having degree f , that is Φf = |{v ∈ |X| | deg(v) = f}|.
The number Nf of Fqf -points of the variety Xf is equal to Nf =

∑
m|f

mΦm.

Let bs(X) = dimQl H
s(X̄,Ql) be the l-adic Betti numbers of X. The zeta func-

tion of X is defined for Re(s) > d by the following Euler product:

ζX(s) =
∏
v∈|X|

1
1−Nv−s

=
∞∏
f=1

(1− q−fs)−Φf ,

where Nv = q− deg v. If we set ZX(u) = ζX(s) with u = q−s then the function
ZX(u) is a rational function of u and can be expressed as

ZX(u) =
2n∏
i=0

(−1)i−1 logPi(X,u),

where

Pi(X,u) =
bi∏
j=1

(
1− u

ρij

)
,

and |ρij | = q−i/2. Moreover, P0(X,u) = 1− u and P2n(X,u) = 1− qdu. As before,
we have that Λf = Nf (X) ≥ 0.

The previous example is obviously included in this one. However, it is better to
separate them as in the case of zeta functions of general varieties over finite fields
much less is known. One more reason to distinguish between these two examples is
that, whereas zeta functions of curves asymptotically behave as L-functions, zeta
functions of varieties are ”real” zeta functions. Thus there is quite a number of
properties that simply do not hold in general (for example, some of those connected
to the distribution of zeroes).

Example 2.3 (Elliptic curves over function fields). Let E be a non-constant elliptic
curve over a function field K = Fq(X) with finite constant field Fq. The curve E
can also be regarded as an elliptic surface over Fq. Let g be the genus of X. Places
of K (that is points of X) will be denoted by v. Let dv = deg v, |v| = Nv = qdeg v

and let Fv = FNv be the residue field of v.
For each place v of K we define av from |Ev(Fv)| = |v|+ 1− av, where |Ev(Fv)|

is the number of points on the reduction Ev of the curve E. The local factors Lv(s)
are defined by

Lv(s) =

{
(1− av|v|−s + |v|1−2s)−1, if Ev is non-singular;
(1− av|v|−s)−1, otherwise.

We define the global L-function LE(s) =
∏
v
Lv(s). The product converges for

Re s > 3
2 and defines an analytic function in this half-plane. Define the conductor

NE of E as the divisor
∑
v
nvv with nv = 1 at places of multiplicative reduction,
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nv = 2 at places of additive reduction for char Fq > 3 (and possibly larger when
char Fq = 2 or 3) and nv = 0 otherwise. Let nE = degNE =

∑
v
nv deg v.

It is known (see [Bru]) that LE(s) is a polynomial LE(u) in u = q−s of degree
nE + 4g − 4. The polynomial LE(u) has real coefficients, satisfies LE(0) = 1 and
all of its roots have absolute value q−1.

Let αv, ᾱv be the roots of the polynomial 1 − avt + |v|t2 for a place v of good
reduction and let αv = av and ᾱv = 0 for a place v of bad reduction. Then from
the definition of LE(s) one can easily deduce that

(2) Λf =
∑

mdv=f

dv(αmv + ᾱmv ),

the sum being taken over all places v of K and m ≥ 1 such that m deg v = f.
This example will be the principal one in the sense that all our results on L-

functions are established in the view to apply them to this particular case. These
L-functions are particularly interesting from the arithmetic point of view, especially
due to the connection between the special value of such an L-function at s = 1 and
the arithmetic invariants of the elliptic curve (the order of the Shafarevich–Tate
group and the regulator) provided by the Birch and Swinnerton-Dyer conjecture.

3. Families of zeta and L-functions

3.1. Definitions and basic properties. We are interested in studying sequences
of zeta and L-functions. Let us fix the finite field Fq.

Definition 3.1. We will call a sequence {Lk(s)}k=1...∞ of L-functions a family if
they all have the same weight d and the degree gk tends to infinity.

Definition 3.2. We will call a sequence {ζk(s)}k=1...∞ =
{

d∏
i=0

Lki(s)wi
}
k=1...∞

of zeta functions a family if the total degree gk =
d∑
i=0

gki tends to infinity. Here gki

are the degrees of the individual L-functions Lki(s) in ζk(s).

Remark 3.1. In the definition of a family of zeta functions we assume that d = dk
and wi = wki are the same for all k. Obviously, any family of L-functions is at the
same time a family of zeta functions.

Definition 3.3. A family {ζk(s)}k=1...∞ of zeta or L-functions is called asymptot-
ically exact if the limits

γi = γi({ζk(s)}) = lim
k→∞

gki
gk

and λf = λf ({ζk(s)}) = lim
k→∞

Λkf
gk

exist for each i = 0, . . . , d and each f ∈ Z, f ≥ 1. It is called asymptotically bad if
λf = 0 for any f and asymptotically good otherwise.

The following (easy) proposition will be important.

Proposition 3.1. Let L(s) be an L-function. Then

(1) for each f we have the bound |Λf | ≤ q
df
2 g;

(2) there exists a number C(q, d, s) depending on q, d and s but not on g such
that | logL(s)| ≤ C(q, d, s)g for any s with Re s 6= d

2 . The bound is uniform
in each vertical strip a ≤ Re s ≤ b, d2 /∈ [a, b].
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Proof. To prove the first part we use proposition 2.1. Applying it to the sequence
consisting of one non-zero term we get:

(3) Λf = −
∑

Lki(ρ)=0

qdfρf .

The absolute value of the right hand side of this equality is bounded by q
df
2 g.

To prove the second part we assume first that Re s = ε + d
2 > d

2 . We have the
estimate:

| logL(s)| =

∣∣∣∣∣∣
∞∑
f=1

Λf
f
q−fs

∣∣∣∣∣∣ ≤
∞∑
f=1

g

f
· q

df
2 · q−f Re s ≤ g

∞∑
f=1

1
fqεf

.

For Re s < d
2 we use the functional equation (1). �

Proposition 3.2. Any family of zeta and L-functions contains an asymptotically
exact subfamily.

Proof. We note that both gki
gk

and Λkf
gk

are bounded. For the first expression it is
obvious and the second expression is bounded by proposition 3.1. Now we can use
the diagonal method to choose a subfamily for which all the limits exist. �

As in the case of curves over finite fields we have to single out the factors in zeta
functions which are asymptotically negligible. This can be done using proposition
3.1.

Definition 3.4. Let {ζk(s)} be an asymptotically exact family of zeta functions.
Define the set I ⊂ {0 . . . d} by the condition i ∈ I if and only if γi = 0. We define
ζn,k(s) =

∏
i∈I

Lki(s)wi the negligible part of ζk(s) and ζe,k(s) =
∏

i∈{0...d}−I
Lki(s)wi

the essential part of ζk(s). Define also de = max{i | i /∈ I}.

Remark 3.2. The functions ζn,k(s) and ζe,k(s) make sense only for families of zeta
functions and not for individual zetas. We also note that the definitions of the
essential and the negligible parts are obviously trivial for families of L-functions.

The following proposition, though being rather trivial, turns out to be useful.

Proposition 3.3. For an asymptotically exact family of zeta functions {ζi(s)} we
have λf (ζi(s)) = λf (ζe,i(s)).

Proof. This is an immediate corollary of proposition 3.1. �

The condition on a family to be asymptotically exact suffices in the case of
varieties over finite fields due to the positivity of coefficients Λf . However, in general
we will have to impose somewhat stricter conditions on the family.

Definition 3.5. We say that an asymptotically exact family of zeta or L-functions
is asymptotically very exact if the series

∞∑
f=1

|λf |q−
fde
2

is convergent.
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Example 3.1. An obvious example of a family which is asymptotically exact but
not very exact is given by the family of L-functions Lk(s) = (1 − q−s)k. We have

λf = −1 for any f and the series
∞∑
f=1

(−1) is clearly divergent.

Proposition 3.4. Assume that we have an asymptotically exact family of zeta

functions {ζk(s)} =
{

d∏
i=0

Lki(s)wi
}
k=1...∞

, such that all the families {Lki(s)} are

also asymptotically exact. Then, the family {ζk(s)} is asymptotically very exact if
and only if the family {Lkde(s)} is asymptotically very exact.

Proof. This follows from proposition 3.1 together with proposition 3.3. �

In practice, this proposition means that the asymptotic behaviour of zeta func-
tions for Re s > de−1

2 is essentially the same as that of their weight de parts. Thus,
most asymptotic questions about zeta functions are reduced to the corresponding
question about L-function.

3.2. Examples. As before we stick to three types of examples: curves over finite
fields, varieties over finite fields and elliptic curves over function fields.

Example 3.2 (Curves over finite fields). Let {Xj} be a family of curves over Fq.
Recall (see [TV97]) that an asymptotically exact family of curves was defined by
Tsfasman and Vlăduţ as such that the limits

(4) φf = lim
j→∞

Φf (Xj)
gj

exist. This is equivalent to our definition since Λf = Nf (X) =
∑
m|f

mΦm. Note

a little difference in the normalization of coefficients: in the case of curves we let
λf ({Xj}) = lim

j→∞
Λjf
2gj

since 2gj is the degree of the corresponding polynomial in the

numerator of ζXj (s) and the authors of [TV97] choose to consider simply lim
j→∞

Λjf
gj
.

For any asymptotically exact family of zeta functions of curves the negligible
part of ζX(s) is its denominator (1 − q−s)(1 − q1−s) and the essential part is its
numerator. Thus, zeta functions of curves asymptotically behave as L-functions.
Any asymptotically exact family of curves is asymptotically very exact as shows
the basic inequality from [TV97] (see also corollary 4.2 below), which is in fact due
to positivity of λf .

Example 3.3 (Varieties over finite fields). In the case of varieties over finite fields
we have an analogous notion of an asymptotically exact family [LT], namely we ask
for the existence of the limits

φf = lim
j→∞

Φf (Xj)
b(Xj)

and βi = lim
j→∞

bi(Xj)
b(Xj)

,

where b(Xj) =
2d∑
i=0

bi(Xj) is the sum of Betti numbers. Again this definition and

our definition 3.3 are equivalent.
In this case the factors (1 − q−s) and (1 − qd−s) of the denominator are also

always negligible. However, we can have more negligible factors as the following
example shows.
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Take the product C ×C, where C is a curve of genus g →∞. The dimension of
the middle cohomology group H2 grows as g2 and b1 = b3 = g (Kunneth formula).
Thus ζC×C(s) behaves like the inverse of an L-function. If for an asymptotically
exact family we have de = 2d−1 then it is asymptotically very exact as shows a form

of the basic inequality [LT, (8.8)] (it actually gives that the series
∞∑
f=1

λfq
−f(d−1/2)

always converges), see also corollary 4.4 below.

Example 3.4 (Elliptic curves over function fields). In the last example we will be
interested in two particular types of asymptotically exact families.

Asymptotically bad families. Let us fix a function field K = Fq(X) and
let us take the sequence of all pairwise non-isomorphic elliptic curves Ei/K. We
get a family of L-functions since nEi → ∞. From (2) we deduce that |Λf | ≤

2

(∑
dv|f

dv

)
q
f
2 which is independent of nEi . Thus, this family is asymptotically

exact and asymptotically bad, i. e. λf = 0 for any f ≥ 1. This will be the only
fact important for our asymptotic considerations. There will be no difference in
the treatment of this particular family or in that of any other asymptotically bad
family of L-functions.

This family was considered in [HP] in the connection with the generalized Brauer–
Siegel theorem. The main result of that paper is the reduction of the statement
about the behaviour of the order of the Tate–Shafarevich group and the regulator
of elliptic curves over function fields to a statement about the values of their L-
functions at s = 1. See also [Hin] for a similar problem treated in the number field
case.

Base change. Let us consider a family which is, in a sense, orthogonal to the
previous one. Let K = Fq(X) be a function field and let E/K be an elliptic curve.
Let f : E → X be the corresponding elliptic surface. Consider a family of coverings
of curves X = X0 ← X1 · · · ← Xi ← . . . and the family of elliptic surfaces Ei, given
by the base change:

E = E0 ←−−−− E1 ←−−−− . . . ←−−−− Ei ←−−−− . . .yf y y
X = X0 ←−−−− X1 ←−−−− . . . ←−−−− Xi ←−−−− . . . .

Let Φv,f (Xi) be the number of points on Xi, lying above a closed point v ∈ |X|,
such that their residue fields have degree f over Fv.

Lemma 3.5. The limits

φv,f = φv,f ({Xi}) = lim
i→∞

Φv,f (Xi)
g(Xi)

always exist.

Proof. We will follow the proof of the similar statement for Φf from [TV02, lemma
2.4]. Let K2 ⊇ K1 ⊇ K be finite extension of function fields. From the Riemann–
Hurwitz formula we deduce the inequality g(K2)−1 ≥ [K2 : K1](g(K1)−1), where
[K2 : K1] is the degree of the corresponding extension. Now, if we fix w a place
of K1 above v and consider its decomposition {w1, . . . , wr} in K2, then we have
r∑
i=1

degwi ≤ [K2 : K1]. Thus we get for any n ≥ 1 the inequality
n∑
f=1

fΦv,f (K2) ≤
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[K2 : K1]
n∑
f=1

fΦv,f (K1). Dividing we see that

n∑
f=1

fΦv,f (K2)

g(K2)− 1
≤

n∑
f=1

fΦv,f (K1)

g(K1)− 1
.

It follows that the sequence
n∑
f=1

fΦv,f (Xi)
g(Xi)−1 is non-increasing and bounded for any

fixed n and so has a limit. Taking n = 1 we see that φv,1 exists, taking n = 2 we
derive the existence of φv,2 and so on. �

Let us remark that Φf =
∑

m deg v=f

Φv,m, the sum being taken over all places v

of K and the same equality holds for φv.
For our family we can derive a concrete expression for the Dirichlet series coef-

ficients of the logarithms of L-functions. Indeed, (2) gives us

(5) Λf =
∑

mkdv=f

mdvΦv,m(αmkv + ᾱmkv ).

Lemma 3.6. Let Ei/Ki be a family of elliptic curves obtained by a base change
and let ni = nEi/Ki be the degree of the conductor of Ei/Ki. Then the ratio ni

gi
is

bounded by a constant depending only on E0/K0.
If, furthermore, char Fq 6= 2, 3 or the extensions Ki/K0 are Galois for all i then

the limit ν = lim
i→∞

ni
gi

exists.

Proof. The proof basically consists of looking at the definition of the conductor
and applying the same method as in the proof of lemma 3.5. Recall, that if E/K
is an elliptic curve over a local field K, Tl(E) is its Tate module, l 6= char Fq,
Vl(E) = Tl(E)⊗Ql, I(K̄/K) is the inertia subgroup of Gal(K̄/K), then the tame
part of the conductor is defined as

ε(E/K) = dimQl(Vl(E)/Vl(E)I(K̄/K)).

It is easily seen to be non increasing in extensions of K, moreover it is known that
0 ≤ ε(E/K) ≤ 2 (see [Sil, Chap. IV, §10]).

If we let L = K(E[l]), gi(L/K) = |Gi(L/K)|, where Gi(L/K) is the i th ramifi-
cation group of L/K, then the wild part of the conductor is defined as

δ(E/K) =
∞∑
i=1

gi(L/K)
g0(L/K)

dimFl(E[l]/E[l]Gi(L/K)).

One can prove [Sil, Chap. IV, §10] that δ(E/K) is zero unless the characteristic
of the residue field of K is equal to 2 or 3. In any case, the definition shows that
δ(E/M) can take only finitely many values if we fix E and let vary the extension
M/K.

The exponent of the conductor of E over the local field K is defined to be
f(E/K) = ε(E/K) + δ(E/K).

From the previous discussion we see that the ratio ni
gi

is bounded. If, furthermore,
char Fq 6= 2, 3, then an argument similar to the one used in the proof of lemma 3.5
together with the fact that nw(E) ≤ nv(E) if w lies above v in an extension of fields
gives us that the sequence ni

gi
is non-increasing and so it has a limit ν = ν({Ei/Ki}).
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In the case of Galois extensions we notice that nw(E) must stabilize in a tower,
so the previous argument is applicable once again. �

Now we can prove the following important proposition:

Proposition 3.7. Any family of elliptic curves obtained by a base change con-
tains an asymptotically very exact subfamily. If, furthermore, char Fq 6= 2, 3 or the
extensions Ki/K0 are Galois for all i then it is itself asymptotically very exact.

Proof. Recall that for each Ei/Ki the degree of the corresponding L-function is ni+
4gi− 4. It follows from the previous lemma that it is enough to prove the existence

of the limits λ̃f = lim
i→∞

Λf (Ei)
gi

and the convergence of the series
∞∑
f=1

|λ̃f |q−f .

The first statement is a direct corollary of lemma 3.5 and (5). As for the second
statement, we have the following bound:

|Λf | ≤ 2
∑

mkdv=f

mdvΦv,mq
f
2 = 2

∑
lk=f

lΦlq
f
2 = 2Nfq

f
2 .

Now, the convergence of the series
∞∑
f=1

νfq
− f2 with νf = lim

i→∞
Nf (Xi)
gi

is a conse-

quence of the basic inequality from [Tsf, corollary 1]. �

Remark 3.3. It would be nice to know whether the statement of the previous propo-
sition holds without any additional assumptions, i. e. whether a family obtained
by a base change is always asymptotically very exact. This depends on lemma 3.6,
which do not know how to prove in general.

The family of elliptic curves obtained by the base change was studied in [KT]
again in the attempts to obtain a generalization of the Brauer–Siegel theorem to this
case. Kunyavskii and Tsfasman formulate a conjecture on the asymptotic behaviour
of the order of the Tate–Shafarevich group and the regulator in such families (see
conjecture 5.9 below). They also treat the case of constant elliptic curves in more
detail. Unfortunately, the proof of the main theorem [KT, theorem 2.1] given there
is not absolutely flawless (the change of limits remains to be justified, which seems
to be very difficult if not inaccessible at present).

Remark 3.4. If, for a moment, we turn our attention to general families of elliptic
surfaces the following natural question arises:

Question 3.1. Is it true that any family of elliptic surfaces contains an asymptoti-
cally very exact subfamily?

The fact that it is true for two “orthogonal” cases makes us believe that this
property might hold in general.

4. Basic inequalities

In this section we finally start carrying out our program to generalize asymptotic
results from the case of curves over finite fields to the case of general zeta and L-
functions. We will start with the case of L-functions, where a little more can be
said. Next, we will prove a weaker result in the case of zeta functions.
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4.1. Basic inequality for L-functions. Our goal here is to prove the following
theorem, generalizing the basic inequality from [Tsf].

Theorem 4.1. Assume we have an asymptotically exact family {Li(s)} of L-
functions of weight d or an asymptotically exact family of zeta functions {ζi(s)}
with ζe,i(s) being an L-function of weight d for any i. Then for any b ∈ N the
following inequality holds:

(6)
b∑
j=1

(
1− j

b+ 1

)
λjq
− dj2 ≤ 1

2
.

Proof. Using proposition 3.3 one immediately sees that it is enough to prove the
statement of the theorem for L-functions.

As in the proof for curves our main tool will be the so called Drinfeld inequality.
We take an L-function L(s) and let αi = q

d
2 ρi, where ρi are the roots of L(u), so

that |αi| = 1. For any αi we have

0 ≤ |αbi + αb−1
i + · · ·+ 1|2 = (b+ 1) +

b∑
j=1

(b+ 1− j)(αji + α−ji ).

Thus b+ 1 ≥ −
b∑
j=1

(b+ 1− j)(αji + α−ji ). We sum the inequalities for i = 1, . . . , g.

Since the coefficients of L(u) are real we note that
g∑
i=1

αji =
g∑
i=1

α−ji . From (3) we

see that Λj = −qdj
g∑
i=1

ρji . Putting it together we get:

g(b+ 1) ≥ 2
b∑
j=1

(b+ 1− j)Λjq−
dj
2 .

Now, we let vary Li(s) so that gi →∞ and obtain the stated inequality. �

Unfortunately, we are unable to say anything more in general without the knowl-
edge of some additional properties of λj . However, the next corollary shows that
sometimes we can do better.

Corollary 4.2. If a family {Li(s)} is asymptotically exact then

∞∑
j=1

λjq
− dj2 ≤ 1

2
,

provided one of the following conditions holds:

(1) either it is asymptotically very exact or
(2) λj ≥ 0 for any j.

Proof. To prove the statement of the corollary under the first condition we choose

an ε > 0 and b′ ∈ N such that the sum
∞∑

j=b′+1

|λj |q−
dj
2 < ε. Then we choose b′′ such
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that b′

b′′+1 < ε. Now we apply the inequality from theorem 4.1 with b = b′′. We get:

1
2
≥

b′′∑
j=1

(
1− j

b′′ + 1

)
λjq
− dj2 ≥

b′∑
j=1

(
1− j

b′′ + 1

)
λjq
− dj2 +

+
b′′∑

j=b′+1

(
1− j

b′′ + 1

)
λjq
− dj2 ≥ (1− ε)

∞∑
j=1

λjq
− dj2 − 2ε.

So the first part of the corollary is true.
To prove the statement under the second condition we use the same trick. We

take b′ ∈ N such that b
b′+1 < ε. Then we apply theorem 4.1 with b = b′ and notice

that the sum only decreases when we drop the part
b′∑

j=b+1

(
1− j

b′+1

)
λjq
− dj2 since

λj ≥ 0. This gives the second part of the corollary. �

Remark 4.1. We notice that the corollary implies that any asymptotically exact
family of L-functions, satisfying λj ≥ 0 for any j, is asymptotically very exact.
This and the statement of the corollary are still true if assume that λj ≥ 0 for all
but a finite number of j ∈ N.

Remark 4.2. The methods from the section 6 allow us to prove a little stronger
statement. See remark 6.2 for details.

4.2. Basic inequality for zeta functions. We have noticed before that even in
the case of L-functions we do not get complete results unless we assume that our
family is asymptotically very exact or all the coefficients λf are positive. While
working with zeta functions we face the same problem. However, we will deal with
it in a different way for no general lower bound on the sums of the type (6) seems
to be available and such a lower bound would be definitely necessary since zeta
functions are products of L-functions both in positive and in negative powers.

Theorem 4.3. Let {ζk(s)} be an asymptotically exact family of zeta functions.
Then for any real s with de

2 < s < de+1
2 we have:

−
de∑
i=0

γi
qs−i/2 − wi

≤
∞∑
j=1

λjq
−sj ≤

de∑
i=0

γi
qs−i/2 + wi

.

Proof. First of all, proposition 3.1 implies that it is enough to prove the inequality
in the case when ζk(s) = ζe,k(s) and d = de.

Let us write the Stark formula from proposition 2.3:

1
log q

ζ ′(s)
ζ(s)

=
n∑
i=1

wi

gi∑
j=1

1
qsρij − 1

.

We notice that all the terms are real for real s and

R(r, θ) = Re
reiθ

1− reiθ
=

r cos θ
1− 2r cos θ + r2

.

Applying this relation we see that

1
log q

ζ ′(s)
ζ(s)

=
d∑
i=0

wi

gi∑
j=1

R(qi/2−s, θij),
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where ρkj = q−
k
2 eiθkj .

For 0 < r < 1 we have the bounds on R(r, θ) :

− r

r + 1
≤ R(r, θ) ≤ r

r − 1
.

From this we deduce that for s with d
2 < s < d+1

2 the following inequality holds

(7) −
d∑
i=0

γi
qs−i/2 − wi

≤ −1
log q

ζ ′(s)
ζ(s)

≤
d∑
i=0

γi
qs−i/2 + wi

.

The next step is to use theorem 5.2. For any s in the interval
(
d
2 ,

d+1
2

)
it gives

that

lim
k→∞

−1
gk log q

· ζ
′
k(s)
ζk(s)

=
∞∑
j=1

λjq
− sj2 .

Dividing (7) by g, passing to the limit and using the previous equality we get the
statement of the theorem. �

Corollary 4.4. (1) If wde = 1 and either the family is asymptotically very
exact or λj ≥ 0 for all j then

∞∑
j=1

λjq
− dej2 ≤

de∑
i=0

γi
q(de−i)/2 + wi

(2) If wde = −1 and either the family is asymptotically very exact or λj ≤ 0
for all j then

−
de∑
i=0

γi
q(de−i)/2 − wi

≤
∞∑
j=1

λjq
− dej2 .

Proof. Let us suppose that wde = 1 (the other case is treated similarly). For an
asymptotically very exact family for any ε > 0 we can choose N > 0 such that
∞∑
j>N

|λj |q−
dej
2 < ε. Thus both for a very exact family and a family with λj ≥ 0 for

all j we have
N∑
j=1

λjq
−sj ≤

de∑
i=0

γi
qs−i/2 + wi

+ ε

for any real s with de
2 < s < de+1

2 . Passing to the limit when s → de
2 we get the

statement of the corollary. �

Remark 4.3. As before we see that any asymptotically exact family, such that
wde sign(λj) = 1 for any j, is asymptotically very exact.

Remark 4.4. Though the corollary 4.4 implies the corollary 4.2, the basic inequality
for L-functions given by theorem 4.1 is different from the one obtained by applica-
tion of theorem 4.3.
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4.3. Examples.

Example 4.1 (Curves over finite fields). For curves over finite fields we obtain once
again the classical basic inequality from [Tsf]:

∞∑
j=1

2λjq−
j
2 =

∞∑
m=1

mφm
qm/2 − 1

≤ 1.

Of course, this is not an interesting example, since we used this inequality as our
initial motivation.

Example 4.2 (Varieties over finite fields). In a similar way, for varieties over finite
fields we get the inequality from [LT, (8.8)]:

∞∑
m=1

mφm
q(2d−1)m/2 − 1

≤ (q(2d−1)/2 − 1)

β1

2
+
∑
2|i

βi
q(i−1)/2 + 1

+
∑
2-i

βi
q(i−1)/2 − 1

 .

With more efforts one can reprove most (if not all) of the inequalities from [LT,
(8.8)] in the general context of zeta functions, since the main tools used in [LT]
are the explicit formulae. However, we do not do it here as for the moment we are
unable see any applications it might have to particular examples of zeta functions.

Example 4.3 (Elliptic curves over function fields). The case of asymptotically bad
families is trivial: we don not obtain any interesting results here since all λj = 0.

Let us consider the base change case. Let us take an asymptotically very exact
family of elliptic curves obtained by a base change (by proposition 3.7 any family
obtained by a base change is asymptotically very exact, provided char Fq 6= 2, 3).

We can apply corollary 4.2 to obtain that
∞∑
j=1

λjq
−j/2 ≤ 1

2 . Using (5), one can

rewrite it using φv,m as follows:∑
v,m

mdvφv,m(αmv + ᾱmv )q−mdv

1− (αmv + ᾱmv )q−mdv
≤ ν + 4

2

(here ν = lim
i→∞

nEi/Ki
gKi

).

5. Brauer–Siegel type results

5.1. Limit zeta functions and the Brauer–Siegel theorem. Our approach to
the Brauer–Siegel type results will be based on limit zeta functions.

Definition 5.1. Let {ζk(s)} be an asymptotically exact family of zeta functions.
Then the corresponding limit zeta function is defined as

ζlim(s) = exp

 ∞∑
f=1

λf
f
q−fs

 .

Remark 5.1. If ζk(s) = ζfk(s) are associated to some arithmetic or geometric objects
fk we will denote the limit zeta function simply by ζ{fk}(s).
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Remark 5.2. The basic inequality from theorem 4.3 can be reformulated in terms
of ζlim(s) as

−
de∑
i=0

γi
qs−i/2 − wi

≤ − 1
log q

ζ ′lim(s)
ζlim(s)

≤
de∑
i=0

γi
qs−i/2 + wi

.

Here are the first elementary properties of limit zeta functions:

Proposition 5.1. (1) For an asymptotically exact family of zeta functions
{ζk(s)} the series for log ζlim(s) is absolutely and uniformly convergent on
compacts in the domain Re s > de

2 , defining an analytic function there.
(2) If a family is asymptotically very exact then ζlim(s) is continuous for Re s ≥

de
2 .

(3) If for a family we have λj ≥ 0 for any j and wde = 1, then the series
for log ζlim(s) is absolutely and uniformly convergent in the domain Re s ≥
de
2 − δ for some δ > 0.

Proof. The first part of the proposition obviously follows from proposition 3.1 to-
gether with proposition 3.3.

By the definition of an asymptotically very exact family, the series for log ζlim(s)
is uniformly and absolutely convergent for Re s ≥ de

2 so defines a continuous func-
tion in this domain. Thus the second part is proven.

To get the third part we apply corollary 4.4 to see that our family is asymptoti-
cally very exact. Then we use a well known fact that the domain of convergence of
a Dirichlet series with non-negative coefficients is an open half-plane Re s > σ. �

It is important to see to which extent limit zeta functions are the limits of
the corresponding zeta functions over finite fields. The question is answered by the
generalized Brauer–Siegel theorem. Before stating it let us give one more definition.

Definition 5.2. For an asymptotically exact family of zeta functions {ζk(s)} the
limit lim

k→∞
log ζk(s)

gk
is called the Brauer–Siegel ratio of this family.

Theorem 5.2 (The generalized Brauer–Siegel theorem). For any asymptotically
exact family of zeta functions {ζk(s)} and any s with Re s > de

2 we have

lim
k→∞

log ζe,k(s)
gk

= log ζlim(s).

If, moreover, 2 Re s 6∈ Z, then

lim
k→∞

log ζk(s)
gk

= log ζlim(s).

The convergence is uniform in any domain de
2 + ε < Re s < de+1

2 − ε, ε ∈
(
0, 1

2

)
.

Proof. To get the first statement we apply proposition 3.3 and exchange the limit
when k → ∞ and the summation, which is legitimate since the series in question
are absolutely and uniformly convergent in a small (but fixed) neighbourhood of s.

To get the second statement we apply proposition 3.1, which gives us:

lim
k→∞

log ζn,k(s)
gk

= 0.

Now the second part of the theorem follows from the first. �
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Remark 5.3. It might be unclear, why we call such a statement the Brauer–Siegel
theorem. We will see below in subsection 5.3 that the above theorem indeed implies
a natural analogue of the Brauer–Siegel theorem for curves and varieties over finite
fields. It is quite remarkable that the proof of theorem 5.2 is very easy once one
gives proper definitions.

Remark 5.4. Let us sketch another way to prove the generalized Brauer–Siegel
theorem. It might seem unnecessarily complicated but it has the advantage of
being applicable in the number field case when we no longer have the convergence
of logLk(s) for Re s > d

2 . We will deal with L-functions to simplify the notation.
The main idea is to prove using Stark formula (proposition 2.3 in the case of L-
functions over finite fields) that L′

k(s)
Lk(s) ≤ C(ε)gk for any s with Re s ≥ d

2 +ε. Then we
apply the Vitali theorem from complex analysis, which states that for a sequence of
bounded holomorphic functions in a domain D it is enough to check the convergence
at a set of points in D with a limit point in D.

Remark 5.5. It is natural to ask, what is the behaviour of limit zeta or L-functions
for Re s ≤ de

2 . Unfortunately nice properties of L-functions such as the functional
equation or the Riemann hypothesis do not hold for Llim(s). This can be seen
already for families of zeta functions of curves. The point is that the behaviour
of Llim(s) might considerably differ from that of lim

k→∞
logLk(s)

gk
when we pass the

critical line.

5.2. Behaviour at the central point. It seems reasonable to ask, what is the
relation between limit zeta functions and the limits of zeta functions over finite
fields on the critical line (that is for Re s = de

2 ). This relation seems to be rather

complicated. For example, one can prove that the limit lim
k→∞

1
gk

ζ′
k(1/2)
ζk(1/2) is always

1 in families of curves (this can be seen from the functional equation), which is
definitely not true for the value ζ′

lim(1/2)
ζlim(1/2) .

However, the knowledge of this relation is important for some arithmetic prob-
lems (see the example of elliptic surfaces in the next subsection). The general
feeling is that for “good” families the statement of the generalized Brauer–Siegel
theorem holds for s = de

2 . There are very few cases when we know it (see section
7 for a discussion) and we, actually, can not even formulate this statement as a
conjecture, since it is not clear what conditions on L-functions we should impose.

Still, in general one can prove the “easy” inequality. The term is borrowed from
the classical Brauer–Siegel theorem from the number field case, where the upper
bound is known unconditionally (and is easy to prove) and the lower bound is not
proven in general (one has to assume either GRH or a certain normality condition
on the number fields in question). This analogy does not go too far though for in
the classical Brauer–Siegel theorem we work far from the critical line and here we
study the behaviour of zeta functions on the critical line itself.

Let {ζk(s)} be an asymptotically exact family of zeta functions. We define rk
and ck using the Taylor series expansion

ζk(s) = ck

(
s− de

2

)rk
+O

((
s− de

2

)rk+1
)
.
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Theorem 5.3. For an asymptotically very exact family of zeta functions {ζk(s)}
such that wde = 1 we have:

lim
k→∞

log |ck|
gk

≤ log ζlim

(
de
2

)
.

Proof. Replacing the family {ζk(s)} by the family {ζe,k(s)} we can assume that
d = de.

Let us write

ζk(s) = ck

(
s− d

2

)rk
Fk(s),

where Fk(s) is an analytic function in the neighbourhood of s = d
2 such that

Fk
(
d
2

)
= 1. Let us put s = d

2 + θ, where θ > 0 is a small positive real number. We
have

log ζk(d2 + θ)
gk

=
log ck
gk

+ rk
log θ
gk

+
logFk(d2 + θ)

gk
.

To prove the theorem we will construct a sequence θk such that
(1) 1

gk
log ζk

(
d
2 + θk

)
→ log ζlim

(
d
2

)
;

(2) rk
gk

log θk → 0;
(3) lim inf 1

gk
logFk

(
d
2 + θk

)
≥ 0.

For each natural number N we choose θ(N) a decreasing sequence such that∣∣∣∣ζlim(d2
)
− ζlim

(
d

2
+ θ(N)

)∣∣∣∣ < 1
2N

.

This is possible since ζlim(s) is continuous for Re s ≥ d
2 by proposition 5.1. Next,

we choose a sequence k′(N) with the property:∣∣∣∣ 1
gk

log ζk

(
d

2
+ θ

)
− log ζlim

(
d

2
+ θ

)∣∣∣∣ < 1
2N

for any θ ∈ [θ(N + 1), θ(N)] and any k ≥ k′(N). This is possible by theorem 5.2.
Then we choose k′′(N) such that

rk log θ(N + 1)
gk

≤ θ(N)
N

for any k ≥ k′′(N), which can be done thanks to corollary 6.2 that gives us for an
asymptotically very exact family rk

gk
→ 0. Finally, we choose an increasing sequence

k(N) such that k(N) ≥ max(k′(N), k′′(N)) for any N.
Now, if we define N = N(k) by the condition k(N) ≤ k ≤ k(N + 1) and let

θk = θ(N(k)), then from the conditions imposed while defining θk we automatically
get (1) and (2). The delicate point is (3). We apply the Stark formula from
proposition 2.3 to get an estimate on

(
logFk

(
d
2 + θ

))′
:

1
gk

(
log ζk

(
d

2
+ θ

)
+ rk log θ

)′
= − log q

2gk

d∑
i=0

wigi+

+
1
gk

d−1∑
i=0

wi
∑

Li(θij)=0

1
d
2 + θ − θij

+
1
gk

∑
Ld(θdj)=0

1
d
2 + θ − θdj

.
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The first term on the right hand side is clearly bounded by − log q from below. The
first sum involving L-functions is also bounded by a constant C1 as can be seen
applying the Stark formula to individual L-functions and then using proposition
3.1. The last sum is non-negative. Thus, we see that 1

gk

(
logFk

(
d
2 + θ

))′ ≥ C for
any small enough θ. From this and from the fact that Fk

(
d
2

)
= 1 we deduce that

1
gk

logFk

(
d

2
+ θk

)
≥ Cθk → 0.

This proves (3) as well as the theorem. �

Remark 5.6. The proof of the theorem shows the importance of “low” zeroes of
zeta functions (that is zeroes close to s = d

2 ) in the study of the Brauer–Siegel ratio
at s = d

2 . The lack of control of these zeroes is the reason why we can not prove a
lower bound on lim

k→∞
log |ck|
gk

.

Remark 5.7. If we restrict our attention to L-functions with integral coefficients (i.
e. such that L(u) has integral coefficients), then we can see that the ratio log |ck|

gk
is bounded from below by −d log q, at least for even d. This follows from a simple
observation that if a polynomial with integral coefficients has a non-zero positive
value at an integer point then this value is greater then or equal to one. One may
ask whether there is a lower bound for arbitrary d and whether anything similar
holds in the number field case.

5.3. Examples.

Example 5.1 (Curves over finite fields). First of all, let us show that the generalized
Brauer–Siegel theorem 5.2 implies the standard Brauer–Siegel theorem for curves
over finite fields from [TV97].

Let hX be the number of Fq-rational pints on the Jacobian of X, i. e. hX =
|Pic0

Fq (X)|.

Corollary 5.4. For an asymptotically exact family of curves {Xi} over a finite
field Fq we have:

(8) lim
i→∞

log hi
gi

= log q +
∞∑
f=1

φf log
qf

qf − 1
.

Proof. It is well known (cf. [TVN]) that for a curve X the number hX can be
expressed as hX = LX(1), where LX(u) is the numerator of the zeta function of
X. Using the functional equation for ζX(s) we see that this expression is equal to
LX(0) = LX(1) + g log q.

The right hand side of (8) can be written as log q+2 log ζ{Xi}(1), where ζ{Xi}(s)
is the limit zeta function (the factor 2 appears from the definition of log ζ{Xi}(s),
in which we divide by 2g and not by g). Thus, it is enough to prove that

lim
i→∞

logLXi(1)
2gi

= log ζ{Xi}(1).

This follows immediately from the first equality of theorem 5.2. �

Using nearly the same proof we can obtain one more statement about the as-
ymptotic behaviour of invariants of function fields. To formulate it we will need to
define the so called Euler–Kronecker constants of a curve X (see [Ih]):
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Definition 5.3. Let X be a curve over a finite field Fq and let

ζ ′X(s)
ζX(s)

= −(s− 1)−1 + γ0
X + γ1

X(s− 1) + γ2
X(s− 1)2 + . . .

be the Taylor series expansion of ζ′
X(s)
ζX(s) at s = 1. Then γX = γ0

X is called the Euler–
Kronecker constant of X and γkX , k ≥ 1 are be called the higher Euler-Kronecker
constants.

We also define the asymptotic Euler-Kronecker constants γk{Xi} from:

ζ ′{Xi}(s)

ζ{Xi}(s)
= γ0
{Xi} + γ1

{Xi}(s− 1) + γ2
{Xi}(s− 1)2 + . . .

(ζ{Xi}(s) is holomorphic and non-zero at s = 1 so its logarithmic derivative has no
pole at this point).

The following result generalizes theorem 2 from [Ih]:

Corollary 5.5. For an asymptotically exact family of curves {Xi} we have

lim
i→∞

γki
gi

= γk{Xi}

for any non-negative integer k. In particular,

lim
i→∞

γi
gi

= −
∞∑
f=1

φff log q
qf − 1

.

Proof. . We apply the first equality from theorem 5.2. Using the explicit expression
for the negligible part of zetas as (1− q−s)(1− q1−s), we see that

lim
i→∞

log ζXi(s)
2gi

= log ζ{Xi}(s)

for any s, such that Re s > 1
2 and s 6= 1 + 2πk

log q , k ∈ Z and the convergence is
uniform in a < |s− 1| < b for small enough a and b. We take the derivative of both
sides and use the Cauchy integral formula to get the statement of the corollary. �

Remark 5.8. It seems not completely uninteresting to study the behaviour of γkX
“on the finite level”, i.e. to try to obtain bounds on γkX for an individual curve
X. This was done in [Ih] for γX . In the general case the explicit version of the
generalized Brauer–Siegel theorem from [LZ] might be useful.

Remark 5.9. It is worth noting that the above corollaries describe the relation
between log ζXi(s) and log ζ{Xi}(s) near the point s = 1. The original statement of
theorem 5.2 is stronger since it gives this relation for all s with Re s > 1

2 .

Example 5.2 (Varieties over finite fields). Just as for curves, for varieties over finite
fields we can get similar corollaries concerning the asymptotic behaviour of ζXi(s)
close to s = d. We give just the statements, since the proofs are nearly the same as
before.

The following result is the Brauer–Siegel theorem for varieties proven in [Z].
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Corollary 5.6. For an asymptotically exact family of varieties {Xi} of dimension
d over a finite field Fq we have:

lim
i→∞

log |κi|
b(Xi)

=
∞∑
f=1

φf log
qfd

qfd − 1
,

where κi = Res
s=d

ζXi(s).

In the next corollary we use the same definition of the Euler–Kronecker constants
for varieties over finite fields as in the previous example for curves:

Corollary 5.7. For an asymptotically exact family of varieties {Xi} of dimension

d we have lim
i→∞

γki
b(Xi)

= γk{Xi} for any k. In particular, lim
i→∞

γi
b(Xi)

= −
∞∑
f=1

φff log q
qfd−1

.

Example 5.3 (Elliptic curves over function fields). Let us recall first the Brauer–
Siegel type conjectures for elliptic curves over function fields due to Hindry–Pacheco
[HP] and Kunyavskii–Tsfasman [KT].

For an elliptic curve E/K, K = Fq(X) we define cE/K and rE/K from LE/K(s) =
cE/K(s − 1)rE/K + o ((s− 1)rE/K ) . The invariants rE/K and cE/K are important
from the arithmetical point of view, since the Birch and Swinnerton-Dyer conjecture
predicts that rE/K is equal to the rank of the group of K-rational points of E/K and
cE/K can be expressed via the order of the Shafarevich–Tate group, the covolume of
the Mordell–Weil lattice (the regulator) and some other quantities related to E/K
which are easier to control.

Conjecture 5.8 (Hindry–Pacheco). Let Ei run through a family of pairwise non-
isomorphic elliptic curves over a fixed function field K. Then

lim
i→∞

log |cEi/K |
h(Ei)

= 0,

where h(Ei) is the logarithmic height of Ei.

Remark 5.10. We could have divided log |cEi/K | by nEi in the statement of the
above conjecture since h(Ei) and nEi have essentially the same order of growth.

Conjecture 5.9 (Kunyavskii–Tsfasman). For a family of elliptic curves {Ei/Ki}
obtained by a base change we have:

lim
i→∞

log |cEi/Ki |
gKi

= −
∑

v∈X,f≥1

φv,f log
|Ev(FNvf )|

Nvf
.

One can see that the above conjectures are both the statements of the type
considered in the subsection 5.2. It is quite obvious for the first conjecture and for
the second conjecture we have to use the explicit expression for the limit L-function:

logL{Ei/Ki}(s) = − 1
ν + 4

∑
v,f

φv,f log
(

1− (αfv + ᾱfv )Nv−fs + Nvf(1−2s)
)
.

One can unify these two conjectures as follows:

Conjecture 5.10. For an asymptotically very exact family of elliptic curves over
function fields {Ei/Ki} we have:

lim
i→∞

log |cEi/Ki |
gi

= logL{Ei/Ki}(1),
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where gi is the degree of LEi/Ki(s).

Theorems 5.2 and 5.3 imply the following result in the direction of the above
conjectures:

Theorem 5.11. For an asymptotically very exact family of elliptic curves {Ei/Ki}
the following identity holds:

lim
i→∞

logLEi/Ki(s)
gi

= logL{Ei/Ki}(s),

for Re s > 1 (here gi = nEi + 4gKi − 4). Moreover,

lim
i→∞

log |cEi/Ki |
gi

≤ logL{Ei/Ki}(1).

Remark 5.11. If we consider split families of elliptic curves (i.e. Ei = E × Xi,
where E/Fq is a fixed elliptic curve) then the proof of theorem 2.1 from [KT] gives
us that the question about the behaviour of LEi/Xi(s) at s = 1 translates into
the same question concerning the behaviour of ζXi(s) on the critical line. For
example, if the curve E is supersingular, then conjecture 5.10 holds if and only if
lim
i→∞

log |ζXi (1/2)|
gi

= log ζ{Xi}(1/2) (where ζXi(
1
2 ) is understood as the first non-zero

coefficient of the Taylor series expansion of ζXi(s) at s = 1
2 ). So, to prove the

simplest case of conjecture 5.10 we have to understand the asymptotic behaviour
of zeta functions of curves over finite fields on the critical line.

6. Distribution of zeroes

6.1. Main results. In this section we will prove certain results about the limit
distribution of zeroes in families of L-functions. As a corollary we will see that the
multiplicities of zeroes in asymptotically very exact families of L-functions can not
grow too fast.

Let C = C[−π, π] be the space of real continuous functions on [−π, π] with
topology of uniform convergence. The space of measures µ on [−π, π] is by definition
the space M, which is topologically dual to C. The topology on M is the ∗-weak
one: µi → µ if and only if µi(f)→ µ(f) for any f ∈ C.

The space C can be considered as a subspace of M : if φ(x) ∈ C then µφ(f) =∫ π
−π f(x)φ(x) dx. The subspace C is dense in M in ∗-weak topology.

Let L(s) be an L-function and let ρ1, . . . , ρg be the zeroes of the corresponding
polynomial L(u). Define θk ∈ (−π, π] by ρk = q−d/2eiθk . One can associate a
measure to L(s) :

(9) µL(f) =
1
g

g∑
k=1

δθk(f),

where δθk is the Dirac measure supported at θk, i.e. δθk(f) = f(θk) for an f ∈ C.
The main result of this section is the following one:

Theorem 6.1. Let {Lj(s)} be an asymptotically very exact family of L-functions.
Then the limit Mlim = lim

j→∞
Mj exists. Moreover, Mlim is a nonnegative contin-

uous function given by an absolutely and uniformly convergent series:

Mlim(x) = 1− 2
∞∑
k=1

λk cos(kx)q−
dk
2 .
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Proof. The absolute and uniform convergence of the series follows from the defini-
tion of an asymptotically very exact family. It is sufficient to prove the convergence
of measures on the space C.

The linear combinations of cos(mx) and sin(mx) are dense in the space of con-
tinuous functions C, so it is enough to prove that for any m = 0, 1, 2, . . . we have:

(10) lim
j→∞

Mj(cos(mx)) =Mlim(cos(mx)),

and

(11) lim
j→∞

Mj(sin(mx)) =Mlim(sin(mx)).

The corollary 2.2 shows that:

Mj(cos(mx)) =
gj∑
k=1

cos(mθkj) = −2Λmq−
dm
2

for m 6= 0 and Mj(1) = gj . Dividing by gj and passing to the limit when j → ∞
we get (10).

Now, we note, that if ρ = eiθ, with θ 6= kπ is a zero of L(u) then ρ = ei(θ+π)

is also a zero of L(u) with the same multiplicity. Thus Mj(sin(mx)) = 0 =
Mlim(sin(mx)) for any j and m. So we get (11) and the theorem is proven. �

Corollary 6.2. Let {ζj(s)} be an asymptotically very exact family of zeta functions
with wde = 1 and let rj be the order of zero of ζj(s) at s = de

2 . Then

lim
j→∞

rj
gj

= 0.

Proof. Suppose that lim sup rj
gj

= ε > 0. Taking a subsequence we can assume
that lim

j→∞
rj
gj

= ε. Taking a subsequence once again and using proposition 3.4 we

can assume that we are working with an asymptotically very exact sequence of
L-functions {Lj(s)} = {Ljde(s)} for which the same property concerning rj holds.

By the previous theorem lim
j→∞

Mj =Mlim. Let us take an even continuous non-

negative function f(x) ∈ C[−π, π] with the support contained in (− ε
α ,

ε
α ), where

α = 4 max{
∫ π
−πMlim(x) dx, 1} and such that f(0) = 1. We see that

ε ≤ lim
j→∞

Mj(f(x)) =
∫ π

−π
f(x)Mlim(x) dx ≤ ε

2
,

so we get a contradiction. Thus the corollary is proven. �

Remark 6.1. It is easy to see that the same proof gives that the multiplicity of the
zero at any particular point of the critical line grows asymptotically slower than g.

Remark 6.2. Using theorem 6.1 one can give another proof of the basic inequality
for asymptotically very exact families of L-functions(corollary 4.2). Indeed, all the
measures defined by (9) are non-negative. Thus the limit measureMlim must have
a non-negative density at any point, in particular at x = 0. This gives us exactly
the basic inequality. In this way we get an interpretation of the difference between
the right hand side and the left hand side of the basic inequality as “the asymptotic
number of zeroes of Lj(s), accumulating at s = d

2 ”.
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In fact, using the same reasoning as before, we get a family of inequalities (which
are interesting when not all the coefficients λf are non-negative):

∞∑
k=1

λk cos(kx)q−
dk
2 ≤ 1

2

for any x ∈ R.

6.2. Examples.

Example 6.1 (Curves over finite fields). In the case of curves over finite fields we
recover the theorem 2.1 from [TV97]:

Corollary 6.3. For an asymptotically exact family {Xi} of curves over a finite field
Fq the limit M{Xi} = lim

i→∞
MXi is a continuous function given by an absolutely

and uniformly convergent series:

M{Xi}(x) = 1−
∞∑
k=1

kφkhk(x),

where

hk(x) =
qk/2 cos(kx)− 1

qk + 1− 2qk/2 cos(kx)
.

Proof. This follows from theorem 6.1 together with the following series expansion:
∞∑
l=1

t−l cos(lkx) =
t cos(kx)− 1

t2 + 1− 2t cos(kx)
.

�

Example 6.2 (Varieties over finite fields). We can not say much in this case since
the zero distribution theorem 6.1 applies only to L-functions. The only thing we
get is that the multiplicity of zeroes on the line Re s = d− 1

2 divided by the sum of
Betti numbers tends to zero (corollary 6.2).

Example 6.3 (Elliptic curves over function fields). Let us consider first asymptot-
ically bad families of elliptic curves. We have the following corollary of theorem
6.1.

Corollary 6.4. For an asymptotically bad family of elliptic curves {Ei} over func-
tion fields the zeroes of LEi(s) become uniformly distributed on the critical line when
i→∞.

This result in the particular case of elliptic curves over the fixed field Fq(t) was
obtained in [Mi]. In fact, unlike us, Michel gives an estimate for the difference
Mi −M{Ei} in terms of the conductor nEi . It would be interesting to have such a
bound in general.

Corollary 6.5. For an asymptotically very good family of elliptic curves {Ei/Ki}
obtained by a base change the limit M{Ei/Ki} = lim

i→∞
MEi/Ki is a continuous

function given by an absolutely and uniformly convergent series:

M{Ei/Ki}(x) = 1− 2
ν + 4

∑
v,f

φv,ffdv

∞∑
k=1

αkv + ᾱkv
qfdvk

cos(fdvkx).
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Corollary 6.6. For a family of elliptic curves {Ei/Ki} obtained by a base change

lim
i→∞

ri
gi

= 0.

Proof. By proposition 3.7 any such family contains an asymptotically exact sub-
family so we can apply corollary 6.2. �

Remark 6.3. For a fixed field K and elliptic curves over it a similar statement can
be deduced from the bounds in [Bru]. However, in the case of the base change
Brumer’s bounds do not imply corollary 6.2. It would be interesting to see, what
bounds one can get for the ranks of individual elliptic curves when we vary the
ground field K. Getting such a bound should be possible with a proper choice of a
test function in the explicit formulae.

7. Open questions and further research directions

In this section we would like to gather together the questions which naturally
arise in the connection with the previous sections. Let us start with some general
questions. First of all:

Question 7.1. To which extent the formal zeta and L-functions defined in section
2 come from geometry?

One can make it precise in several ways. For example, it is possible to ask
whether any L-function of weight d, such that L(u) has integral coefficients is
indeed the characteristic polynomial of the Frobenius automorphism acting on the
d-th cohomology group of some variety V/Fq. A partial answer to this question
when d = 1 is provided by the Honda–Tate theorem on abelian varieties [Ta].
The same question can be asked about motives over Fq. This is similar to what is
conjectured about L-functions from the so called Selberg class in the number field
case (modularity, Galois representations side, etc.) [Tay].

Question 7.2. Describe the set {(λ1, λ2, . . . )} for asymptotically exact (very exact)
families of zeta functions (L-functions).

There are definitely some restrictions on this set, namely those given by various
basic inequalities (theorems 4.1 and 4.3, remark 6.2). It would be interesting to see
whether there are any others. We emphasize that the problem is not of arithmetic
nature since we do not assume that the coefficients of polynomials, corresponding
to L-functions, are integral. It would be interesting to see what additional restric-
tions the integrality condition on the coefficients of L(u) might give. Note that,
using geometric constructions, Tsfasman and Vlăduţ [TV97] proved that the sets of
parameters λf , satisfying λf ≥ 0 for any f and the basic inequality are all realized
when q is a square and d = 1. This implies the same statement for L-functions with
q and d. However, our new L-function might no longer have integral coefficients.

Question 7.3. How many asymptotically good (very good) families are there among
all asymptotically exact (very exact) families?

The “how many” part of the question should definitely be made more precise.
One way to do this is to consider the set Vg of the vectors of coefficients of poly-
nomials corresponding to L-functions of degree g and its subset Vg(f, a, b) consist-
ing of the vectors of coefficients of polynomials corresponding to L-functions with
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a <
Λf
g < b. A natural question is whether the ratio of the volume of Vg(f, a, b)

to the volume of Vg has a limit when g → ∞ and what this limit is. See [DH] for
some information about Vg. The question is partly justified by the fact that it is
difficult to construct asymptotically good families of curves. We would definitely
like to know why.

Let us now ask some questions concerning the concrete results on zeta and L-
functions proven in the previous sections.

Question 7.4. Is it true that the generalized Brauer–Siegel theorem 5.2 holds on
the line Re s = 1

2 for some (most) asymptotically very exact families?

It is probable that without the additional arithmetic conditions on the family
the statement does not hold. The most interesting families here are the families of
elliptic curves over function fields considered in subsection 5.3 due to the arithmetic
applications. For the moment the author is not aware of the existence of a single
family of geometric origin for which we know the result. One might try to look at
particular examples of families of curves over finite fields where the zeta function is
more or less explicitly known. These include the Fermat curves [KS] and the Jacobi
curves [Ko].

The only examples we know that support the positive answer to the above ques-
tion come from the number field case. It is known that there exists a sequence {di}
in N of density at least 1

2 such that

lim
i→∞

log ζQ(
√
di)

( 1
2 )

log di
= 0

(cf. [IS]). The techniques of the evaluation of mollified moments of Dirichlet L-
functions used in that paper is rather involved. It would be interesting to know
whether one can obtain analogous results in the function field case. The related
questions in the function field case are studied in [KS]. It is not clear whether the
results on the one level densities for zeroes obtained there can be applied to the
question of finding a lower bound on log |ci|

gi
for some positive proportion of fields

(both in the number field and in the function field cases).

Question 7.5. Prove the generalized Brauer–Siegel theorem 5.2 with an explicit
error term.

This was done for curves over finite fields in [LZ] and looks quite feasible in
general. It is also worth looking at particular applications that such a result might
have, in particular one may ask what bounds on the Euler–Kronecker constants it
gives.

Question 7.6. How to characterize measures corresponding to asymptotically very
exact families?

This was done in [TV97] for families such that λf ≥ 0 for all f. The general case
remains open.

Question 7.7. Estimate the error term in theorem 6.1.

As it was mentioned before, in the case of elliptic curves over Fq(t) the estimates
were carried out in [Mi].

Question 7.8. Find explicit bounds on the orders of zeroes of L-functions on the
line Re s = d

2 .
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The corollary 6.2 gives that the ratio ri
gi
→ 0 for asymptotically very exact

families (here ri is the multiplicity of the zero). In a particular case of elliptic curves
over a fixed function field Brumer in [Bru] gives a bound which grows asymptotically
slower than the conductor. Using explicit formulae with a proper choice of test
functions, it should be possible to give such upper bounds for families obtained by
a base change if not in general.

Let us finally ask a few more general questions.

Question 7.9. How can one apply the results of this paper to get the information
about the arithmetic or geometric properties of the objects to which L-functions
are associated?

We carried out this task (to a certain extent) in the case of curves and varieties
over finite fields and elliptic curves over function fields. Additional examples are
more than welcome.

The last but not least:

Question 7.10. What are the number field analogues of the results obtained in this
paper?

It seems that most of the results can be generalized to the framework of the Sel-
berg class (as described, for example, in [IK, Chapter 5]), subject to imposing some
additional hypothesis (such as the Generalized Riemann Hypothesis, the General-
ized Ramanujan Conjectures, etc.). Of course, one will have to overcome quite a
lot of analytical difficulties on the way (compare, for example, [TV97] and [TV02]).

We hope to return to this interesting and promising subject later on.
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