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par

Alexey ZYKIN

sous la direction de

Michael A. TSFASMAN
et

Serge VLĂDUŢ
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2.3 Démonstration du théorème 2.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 La somme sur les premiers . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
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4.2 Démonstration du théorème 4.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Propriétés asymptotiques des fonctions zêta sur les corps finis 47
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6.4.3 Au delà du genre 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6



Introduction

Deux parties principales constituent le sujet de cette thèse. La première partie est consacrée
à l’étude des propriétés asymptotiques des fonctions zêta, des fonctions L, des corps globaux et
des variétés sur ces corps. Le but de la deuxième partie est l’étude des jacobiennes parmi les
variétés abéliennes de dimension 3. La thématique étant large nous allons donner une description
détaillée du contenu de chaque partie et de chaque chapitre.

Première partie.

La théorie asymptotique des corps globaux a été développée dans les années 1990 par M.
Tsfasman et S. Vlăduţ, d’abord pour les corps de fonctions puis pour les corps de nombres. La
théorie avait pour origine le problème suivant : étant donné un nombre entier positif g et une
puissance d’un nombre premier q, trouver le nombre maximal de points sur une courbe de genre
g sur le corps fini Fq. Le problème s’avère très difficile et la réponse complète n’est connue que
pour g = 1 et g = 2. Il y a aussi des résultats partiels pour g = 3, qui sont obtenus en étudiant
les jacobiennes parmi les variétés abéliennes de dimension 3, ce qui fait l’objet de la deuxième
partie de cette thèse.

V. Drinfeld, S. Vlăduţ puis M. Tsfasman ont réussi à obtenir des résultats intéressants
en considérant ce problème sous un angle différent. Ils ont, notamment, obtenu des bornes
asymptotiques pour le nombre maximal de points quand g → ∞, qui sont optimales quand q
est un carré. Tout cela a eu de nombreuses applications en théorie des codes correcteurs, en
théorie des empilements de sphères, etc.

Cette théorie asymptotique a été développée bien au delà de ces bornes pour le nombre de
points et elle réunit maintenant des résultats très divers. Citons par exemple : le théorème de
Brauer–Siegel généralisé pour les corps de fonctions et pour les corps de nombres, les bornes
pour les régulateurs et pour les discriminants, la théorie asymptotique des fonctions zêta des
corps globaux, les bornes pour le nombre de points sur les variétés sur les corps finis. . .

Le but de la première partie de la thèse est, d’abord d’étudier plus profondément la théorie
asymptotique des corps globaux et surtout celle des corps de nombres où les résultats étaient
bien moins précis à cause des difficultés analytiques inhérentes au sujet. Puis, nous entreprenons
la quête d’autres cas où la théorie asymptotique pourrait être applicable. Plus précisément, nous
étudions les trois cas suivants avec des points de vue différents : les fonctions zêta des variétés
de dimension supérieure sur les corps finis, les fonctions L des surfaces elliptiques sur les corps
finis et les fonctions L des formes modulaires. Nous avons le sentiment que ces trois cas ne sont
que le début d’une longue histoire qui est encore à écrire.

Maintenant nous allons expliquer le contenu de chaque chapitre.
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Chapitre 1.

Dans ce chapitre nous étudions le théorème de Brauer–Siegel pour les corps de nombres. On
a l’énoncé suivant du théorème de Brauer–Siegel classique : si k parcourt une suite d’extensions
normales de Q telle que nk/ log |Dk| → 0, alors log hkRk/ log

√
|Dk| → 11.

Tout d’abord, nous démontrons une généralisation de ce théorème au cas des suites de
corps presque normaux (où un corps presque normal est un corps qui admet une tour de sous-
extensions, dont chaque étage est une extension normale). Le cas asymptotiquement bon (c’est
à dire celui où limnk/ log |Dk| > 0) était déjà connu avec cette généralité grâce aux travaux
de M. Tsfasman et S. Vlăduţ. Cependant, leurs méthodes n’étaient pas applicables au cas
asymptotiquement mauvais. Nous nous servons de la technique de H. Stark ainsi que de certaines
inégalités de S. Louboutin pour démontrer ce résultat.

Ensuite, en utilisant une approche de F. Hajir et C. Maire, nous construisons quelques tours
asymptotiquement bonnes avec lim log hkRk/ log

√
|Dk| plus petit que dans les exemples connus

auparavant.
Les résultats de ce chapitre sont parus dans Moscow Mathematical Journal, Vol. 5, Num 4,

pp. 961–968.

Chapitre 2.

Ce chapitre présente un travail effectué en collaboration avec Philippe Lebacque.
Ici nous étudions le comportement asymptotique des dérivées logarithmiques des fonctions

zêta dans des familles de corps globaux. Ce problème est important car il est lié d’une part
à l’inégalité fondamentale de M. Tsfasman et S. Vlăduţ (dans le cas de corps de fonctions il
s’agit d’une estimation pour le nombre de points sur les courbes sur les corps finis) et d’autre
part au théorème de Brauer–Siegel explicite. Nous démontrons une formule asymptotique pour
la dérivée logarithmique d’une fonction zêta dans la domaine Re s > 1

2 avec un terme d’erreur
explicite. En particulier, sous GRH cela implique une amélioration du théorème de Brauer–Siegel
explicite démontré par P. Lebacque.

L’article correspondant à ce chapitre est soumis pour publication.

Chapitre 3.

Dans ce chapitre nous avons deux buts principaux. En premier lieu, nous donnons un
panorama des généralisations du théorème de Brauer–Siegel classique. Cela comprend les
développements récents qui concernent le cas des variétés de dimension supérieure, en particu-
lier nous donnons une explication détaillée des approches de M. Hindry et A. Pacheco, et de B.
Kunyavskii et M. Tsfasman.

Le deuxième but dans ce chapitre est de démontrer une version du théorème de Brauer–Siegel
pour les variétés de dimension d ≥ 1 sur les corps finis dans lequel il s’agit du comportement
asymptotique du résidu en s = d de leurs fonctions zêta.

Les résultats sont à parâıtre dans Proceedings of the Conference AGCT 11 (2007), Contemp.
Math. series, AMS, 2009.

Chapitre 4.

Ce chapitre est consacré à l’étude de la distribution des zéros des fonctions L des formes
modulaires. Pour les fonctions zêta des corps globaux de tels résultats ont été établis par M.
Tsfasman et S. Vlăduţ. En utilisant leurs méthodes, nous démontrons que sous GRH les zéros

1nk est le degré, Dk est le discriminant, Rk est le régulateur et hk est le nombre de classes d’idéaux de k.
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des fonctions L des formes modulaires deviennent équirépartis sur la droite critique quand le
niveau N ou le poids k (ou les deux) tend vers l’infini.

L’article correspondant à ce chapitre est soumis pour publication.

Chapitre 5.

Dans ce chapitre nous étudions les propriétés asymptotiques des familles de fonctions zêta et
de fonctions L sur les corps finis. Nous le faisons dans le contexte des trois problèmes suivants :
l’inégalité fondamentale, les résultats de type Brauer–Siegel et la distribution des zéros. Nous
donnons une définition algébrique des fonctions L et des fonctions zêta auxquelles s’appliquent
nos méthodes, de façon que la plupart des résultats précédents de G. Lachaud, M. Tsfasman, S.
Vlăduţ sur les mêmes problèmes pour les fonctions zêta des courbes et des variétés sur les corps
finis soient inclus dans notre schéma. Nous analysons dans quelle mesure les résultats classiques
pour les courbes restent vrais dans ce contexte général.

Ensuite, nous passons à des applications concrètes. Le cas le plus intéressant est celui des
fonctions L des familles de surfaces elliptiques, qui a été récemment étudié par B. Kunyavskii,
M. Tsfasman, M. Hindry et A. Pacheco. Les résultats que nous avons obtenus permettent d’ap-
procher quelques-unes de leurs conjectures. En outre, nos méthodes donnent une généralisation
d’un résultat de P. Michel sur l’équirépartition des zéros des fonctions L des courbes elliptiques
sur Fq(t).

Dans le cas classique des courbes sur les corps finis, nous arrivons à démontrer un théorème
pour les fonctions zêta limites dont un corollaire est une généralisation d’un résultat de Y. Ihara
sur la constante d’Euler–Kronecker.

Deuxième partie.

Cette partie présente un travail effectué en collaboration avec Gilles Lachaud et Christophe
Ritzenthaler.

Le point de départ historique est le même problème que dans la première partie : trouver
le nombre maximal de points sur une courbe sur un corps fini. Ici on s’intéresse à ce problème
quand le genre g est petit, tandis que dans la première partie on supposait, au contraire, que
g →∞. La différence des méthodes employées est très sensible.

Une approche de ce problème proposée par J.-P. Serre, consiste à résoudre la même question
pour les variétés abéliennes (ce qui est facile grâce au théorème de Honda–Tate) et puis de
choisir entre toutes les variétés abéliennes celles qui correspondent aux jacobiennes des courbes.
C’est ce dernier problème que nous étudions dans cette partie de la thèse.

En utilisant les formes modulaires de Siegel nous donnons une réponse complète à ce
problème quand le corps de définition k est contenu dans C. Plus précisément, nous réalisons la
stratégie suivante. Pour un corps k et une forme modulaire de Siegel f sur k de poids h ≥ 0 et de
genre g > 1 nous définissons un invariant des k-classes d’isomorphisme des variétés abéliennes
principalement polarisées (A, a). De plus, si (A, a) est une jacobienne d’une courbe plane pro-
jective et lisse nous montrons comment associer à f un invariant plan classique. Comme premier
corollaire de ces constructions, pour g = 3 et k ⊂ C nous obtenons une nouvelle démonstration
de la formule de Klein qui relie la forme modulaire de Siegel χ18 au discriminant des quartiques
planes. Le deuxième corollaire est une démonstration du fait qu’on peut décider si (A, a) est
une jacobienne sur k en regardant si la valeur de χ18 au point correspondant à (A, a) est un
carré dans k.

Cela fournit une réponse à la question de J.-P. Serre sur la caractérisation des jacobiennes.
L’article correspondant à cette partie est soumis pour publication.
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Première partie

Propriétés asymptotiques des
fonctions zêta et L
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Chapitre 1

The Brauer-Siegel and
Tsfasman-Vlăduţ Theorems for
almost normal extensions of number
fields

1.1 Introduction

Let K be an algebraic number field of degree nK = [K : Q] and discriminant DK . We define
the genus of K as gK = log

√
|DK |. By hK we denote the class-number of K, RK denotes its

regulator. We call a sequence {Ki} of number fields a family if Ki is non-isomorphic to Kj for
i 6= j. A family is called a tower if also Ki ⊂ Ki+1 for any i. For a family of number fields we
consider the limit

BS(K) := lim
i→∞

log hKiRKi
gKi

.

The classical Brauer-Siegel theorem, proved by Brauer (see [4]), states that for a family K =
{Ki} we have BS(K) = 1 if the family satisfies two conditions :

(i) lim
i→∞

nKi
gKi

= 0;

(ii) either the generalized Riemann hypothesis (GRH) holds, or all the fields Ki are normal
over Q.

We call a number field almost normal if there exists a finite tower of number fields Q =
K0 ⊂ K1 ⊂ · · · ⊂ Km = K such that all the extensions Ki/Ki−1 are normal. Weakening the
condition (ii), we prove the following generalization of the classical Brauer-Siegel theorem to
the case of almost normal number fields :

Theorem 1.1.1. Let K = {Ki} be a family of almost normal number fields for which nKi/gKi →
0 as i→∞. Then we have BS(K) = 1.

It was shown by M. A. Tsfasman and S. G. Vlăduţ that, taking in account non-archimedian
places, one may generalize the Brauer-Siegel theorem to the case of extensions where the condi-
tion (i) does not hold.

For a prime power q we set

Φq(Ki) := |{v ∈ P (Ki) : Norm(v) = q}|,

where P (Ki) is the set of non-archimedian places of Ki. We also put ΦR(Ki) = r1(Ki) and
ΦC(Ki) = r2(Ki), where r1 and r2 stand for the number of real and (pairs of) complex embed-
dings.
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We consider the set A = {R,C; 2, 3, 4, 5, 7, 8, 9, . . .} of all prime powers plus two auxiliary
symbols R and C as the set of indices. A family K = {Ki} is called asymptotically exact if and
only if for any α ∈ A the following limit exists :

φα = φα(K) := lim
i→∞

Φα(Ki)
gKi

.

We call an asymptotically exact family K asymptotically good (respectively, bad) if there exists
α ∈ A with φα > 0 (respectively, φα = 0 for any α ∈ A). The condition on a family to be
asymptotically bad is, in the number field case, obviously equivalent to the condition (i) in the
classical Brauer-Siegel theorem. For an asymptotically good tower of number fields the following
generalization of the Brauer-Siegel theorem was proved in [87] :

Theorem 1.1.2 (Tsfasman-Vlăduţ Theorem, see [87], Theorem 7.3). Assume that for an
asymptotically good tower K any of the following conditions is satisfied :

– GRH holds
– All the fields Ki are almost normal over Q.

Then the limit BS(K) = lim
i→∞

log hKiRKi
gKi

exists and we have :

BS(K) = 1 +
∑
q

φq log
q

q − 1
− φR log 2− φC log 2π, (1.1)

the sum beeing taken over all prime powers q.

For an asymptotically bad tower of number fields we have φR = 0 and φC = 0 as well as
φq = 0 for all prime powers q, so the right hand side of the formula (1.1) equals to one. We also
notice that the condition on a family to be asymptotically bad is equivalent to lim

i→∞

nKi
gKi

= 0.

So, combining our theorem 1.1.1 with the theorem 1.1.2 we get the following corollary :

Corollary 1.1.3. For any tower K = {Ki}, K1 ⊂ K2 ⊂ . . . of almost normal number fields the
limit BS(K) exists and we have :

BS(K) = lim
i→∞

log(hiRi)
gi

= 1 +
∑
q

φq log
q

q − 1
− φR log 2− φC log 2π,

the sum beeing taken over all prime powers q.

In [87] bounds on the ratio BS(K) were given, together with examples showing that the value
of BS(K) may be different from 1. We corrected some of these erroneous bounds and managed
to precise a few of the estimates in the examples. Also, using the infinite tamely ramified towers,
found by Hajir and Maire (see [27]), we get (under GRH) new examples, both totaly complex
and totally real, with the values of BS(K) smaller than those of totally real and totally complex
examples of [87]. The result is as follows :

Theorem 1.1.4. 1. Let k = Q(ξ), where ξ is a root of f(x) = x6 + x4 − 4x3 − 7x2 − x+ 1,
K = k(

√
ξ5 − 467ξ4 + 994ξ3 − 3360ξ2 − 2314ξ + 961). Then K is totally complex and has

an infinite tamely ramified 2-tower K, for which, under GRH, we have :

BSlower ≤ BS(K) ≤ BSupper,

where BSlower ≈ 0.56498 . . ., BSupper ≈ 0.59748 . . ..
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2. Let k = Q(ξ), where ξ is a root of f(x) = x6 − x5 − 10x4 + 4x3 + 29x2 + 3x − 13,
K = k(

√
−2993ξ5 + 7230ξ4 + 18937ξ3 − 38788ξ2 − 32096ξ + 44590). Then K is totally

real and has an infinite tamely ramified 2-tower K, for which, under GRH, we have :

BSlower ≤ BS(K) ≤ BSupper,

where BSlower ≈ 0.79144 . . ., BSupper ≈ 0.81209 . . ..

However, unconditionally (without GRH), the estimates for totally complex fields that may
be obtained using the methods developed by Tsfasman and Vlăduţ lead to slightly worse results,
than those already known from [87]. This is due to a rather large number of prime ideals of
small norm in the field K. For the same reasons the upper bounds for the Brauer-Siegel ratio
for other fields constructed in [27] are too high, though the lower bounds are still good enough.

Finally we present the table (the ameliorated version of the table of [87]), where all the
bounds and estimates are given together :

lower lower upper upper
bound example example bound

all fields 0.5165 0.5649-0.5975 1.0602-1.0798 1.0938
GRH totally real 0.7419 0.7914-0.8121 1.0602-1.0798 1.0938

totally complex 0.5165 0.5649-0.5975 1.0482-1.0653 1.0764

all fields 0.4087 0.5939-0.6208 1.0602-1.1133 1.1588
Unconditional totally real 0.6625 0.8009-0.9081 1.0602-1.1133 1.1588

totally complex 0.4087 0.5939-0.6208 1.0482-1.1026 1.1310

1.2 Proof of Theorem 1.1.1

Let ζK(s) be the Dedekind zeta function of the number field K and κK its residue at s = 1.
By wK we denote the number of roots of unity in K, and by r1, r2 the number of real and
complex places of K respectively. We have the following residue formula (see [54], Chapter
VIII, Section 3) :

κ =
2r1(2π)r2hKRK
wK
√
|DK |

.

Since √
wK/2 ≤ ϕ(wK) = [Q (ζwK ) : Q] ≤ [K : Q] = nK ,

we note that wK ≤ 2n2
K so logwKj/gKj → 0. Thus, it is enough to prove that log κKj/ log |DKj | →

0.
As for the upper bound we have

Theorem 1.2.1 (See [59], Theorem 1). Let K be a number field of degree n ≥ 2. Then,

κK ≤
(
e log |DK |
2(n− 1)

)n−1

. (1.2)

Moreover, 1/2 ≤ ρ < 1 and ζK(ρ) = 0 imply

κK ≤ (1− ρ)
(
e log |DK |

2n

)n
. (1.3)

Using the estimate (1.2) we get (even without the assumption of almost normality) the ”easy
inequality” :

log κKj
log |DKj |

≤ nj − 1
log |DKj |

(
log

e

2
+ log

log |DKj |
nj − 1

)
→ 0.
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As for the lower bound the business is much more tricky and we will proceed to the proof
after giving a few preliminary statements.

Let K be a number field other than Q. A real number ρ is called an exceptional zero of ζK(s)
if ζK(ρ) = 0 and

1− (4 log |DK |)−1 ≤ ρ < 1;

an exceptional zero ρ of ζK(s) is called its Siegel zero if

1− (16 log |DK |)−1 ≤ ρ < 1.

Our proof will be based on the following fundamental property of Siegel zeroes proved by
Stark :

Theorem 1.2.2 (See [80], Lemma 10). Let K be an almost normal number field, and let ρ be
a Siegel zero of ζK(s). Then there exists a quadratic subfield k of K such that ζk(ρ) = 0.

The next estimate is also due to Stark :

Theorem 1.2.3 (See [80], Lemma 4 or [60], Theorem 1). Let K be a number field and let ρ be
the exceptional zero of ζK(s) if it exists and ρ = 1− (4 log |DK |)−1 otherwise. Then there is an
absolute constant c < 1 (effectively computable) such that

κK > c(1− ρ) (1.4)

Our proof of Theorem 1.1.1 will be similar to the proof of the classical Brauer-Siegel theorem
given in [61]. We will use the Brauer-Siegel result for quadratic fields, a simple proof of which
is given in [23]. There are two cases to consider.

1. First, assume that ζKj (s) has no Siegel zero. From (1.4) we deduce that

κKj > c(1− ρ) ≥ c
(

1−
(

1− 1
16 log |DKj |

))
=

c

16 log |DKj |
. (1.5)

2. Second, assume that there exists a Siegel zero ρ of ζKj (s). From Theorem 1.2.2 we see that
there exists a quadratic subfield kj of Kj such that ζkj (ρ) = 0. Applying (1.3) and (1.4)
we obtain :

κKj =
κKj
κkj

κkj ≥
c(1− ρ)

(1− ρ)
(
e log |Dkj |

4

)2 κkj =
16c

e2 log2 |Dkj |
κkj . (1.6)

If the number of fields Kj for which the second case holds is finite, then, using the fact that
log |DKj | → ∞, we get the desired lower estimate from (1.5).

Otherwise, we note that for a number field there exists at most one exceptional zero (See [80],
Lemma 3), so, applying this statement to the fields kj , we get that only finitely many of them
may be isomorphic to each other and so |Dkj | → ∞ as j → ∞. Thus we may use the Brauer-
Siegel result for quadratic fields :

log κkj
log |DKj |

≤
log κkj

log |Dkj |
→ 0.

Finally from (1.6), we get :

log κKj
log |DKj |

≥ 16c
e2 log |DKj |

− 2
log log |Dkj |

log |DKj |
+

log κkj
log |DKj |

→ 0.

This concludes the proof.
Remark 1.2.1. Our proof of Theorem 1.1.1 is explicit and effective if all the fields in the family
K contain no quadratic subfield and thus the corresponding zeta function does not have Siegel
zeroes.
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1.3 Proof of Theorem 1.1.4

First we recall briefly some constructions related to class field towers. Let us fix a prime
number `. For a finitely generated pro-` group G, we let d(G) = dimF` H

1(G,F`) be its generator
rank. Let T be a finite set of ideals of a number field K such that no prime in T is a divisor
of `. We denote by KT the maximal `-extension of K unramified outside T,GT = Gal(KT /K).
We let

θK,T =

{
1, if T 6= ∅ and K contains a primitive `th root of unity ;
0, otherwise.

Then we have (see [76], theorems 1 and 5) :

Theorem 1.3.1. If d(GT ) ≥ 2 + 2
√
r1(K) + r2(K) + θK,T , then KT is infinite.

To estimate d(GT ) we use the following theorem

Theorem 1.3.2 (See [62], section 2). Let K/k be a finite Galois extension, r1 = r1(k), r2 =
r2(k), ρ be the number of real places of k, ramified in K, t be the number of primes in k, ramified
in K. We set δ` = 1, if k contains a primitive root of degree ` of unity and δ` = 0 otherwise.
Then we have :

d(GT ) ≥ d(G∅) ≥ t− r1 − r2 + ρ− δ`

The number field arithmetic behind the construction of our theorem 1.1.4 was mainly carried
out with the help of the computer package PARI. However, we would like to present our examples
in the way suitable for non-computer check. We give here the proof of the first part of our
theorem, as the proof of the second part is very much similar and may be carried out simply
by repeating all the steps of the proof given here.

The following construction is taken from [27]. We let k = Q(ξ), where ξ is a root of f(x) =
x6 + x4 − 4x3 − 7x2 − x + 1. Then k is a field of signature (4, 1) and discriminant df = dk =
−23·35509. Its ring of integers is Ok = Z[ξ] and its class number is equal to 1. The principal ideal
of norm 7·13·192·232·29·31 generated by η = −671ξ5+467ξ4−994ξ3+3360ξ2+2314ξ−961 factors
into eight different prime ideals of Ok. In fact, one may see that η = π7π13π19π

′
19π23π

′
23π29π31,

where

π7 = −9ξ5 + 6ξ4 − 13ξ3 + 44ξ2 + 31ξ − 12,

π13 = −7ξ5 + 5ξ4 − 11ξ3 + 36ξ2 + 23ξ − 9,

π19 = 5ξ5 − 4ξ4 + 8ξ3 − 26ξ2 − 15ξ + 6,

π′19 = 5ξ5 − 3ξ4 + 7ξ3 − 24ξ2 − 20ξ + 6,

π23 = −5ξ5 + 4ξ4 − 8ξ3 + 26ξ2 + 15ξ − 9,

π′23 = 6ξ5 − 4ξ4 + 9ξ3 − 30ξ2 − 22ξ + 6,

π29 = 11ξ5 − 8ξ4 + 17ξ3 − 56ξ2 − 35ξ + 16,

π31 = 7ξ5 − 5ξ4 + 11ξ3 − 36ξ2 − 22ξ + 7.

K = k(
√
η) is a totally complex field of degree 12 over Q with the relative discriminant DK/k

equal to (η) as η = β2 + 4γ, where β = ξ5 + ξ4 + ξ3 + 1, γ = −173ξ5 + 112ξ4 − 270ξ3 + 815ξ2 +
576ξ−237. From this we see that dK = 7 ·13 ·192 ·232 ·29 ·31 ·232 ·355092. From Theorem 1.3.2
we deduce that

d(G∅) ≥ t− r1(k)− r2(k) + ρ− 1 = 8− 4− 1 + 4− 1 = 6.

17



The right hand side of the inequality from Theorem 1.3.1 is equal to 2 + 2
√

6 ≈ 6.8989 < 7,
so it is enough to show that d(GT ) > d(G∅), and to do this it is enough to construct a set of
prime ideals T and an extension of K, ramified exactly at T.

Let π3 = −6ξ5 +4ξ4−9ξ3 +30ξ2 +21ξ−7 be the generator of a prime ideal of norm 3 in Ok
and T be the set consisting of one prime ideal of OK over π3Ok. We see that π3π19 = 11ξ5−8ξ4+
17ξ3−56ξ2−35ξ+14 = ρ2 +4σ, where ρ = ξ5 +ξ3 +ξ2 +1, σ = 2ξ5−8ξ4−14ξ3−28ξ2−9ξ+5,
so k(

√
π3π19)/k is ramified exactly at π3 and π19. But π19 already ramifies in K that is why

K(
√
π3π19)/K is ramified exactly at T . Thus we have showed that d(GT ) ≥ 7 and KT /K is

indeed infinite.
To complete our proof we need a few more results.

Theorem 1.3.3 (GRH Basic Inequality, see [87], Theorem 3.1). For an asymptotitically exact
family of number fields under GRH one has :∑

q

φq log q
√
q − 1

+ φR

(
log 2
√

2π +
π

4
+
γ

2

)
+ φC(log 8π + γ) ≤ 1, (1.7)

the sum beeing taken over all prime powers q.

Theorem 1.3.4 (See [27], Theorem 1). Let K be a number field of degree n over Q, such that
KT is infinite and assume that KT =

⋃∞
i=1Ki. Then

lim
i→∞

gi
ni
≤ gK
nK

+

∑
p∈T log(NK/Qp)

2nK
.

For our previously constructed field K the genus is equal to gK ≈ 25.3490 . . . . From Theo-
rem 1.3.4 we easily see that φR = 0 and 12

2gK+2 log 3 ≤ φC ≤ 12
2gK

, i. e., 0.23669 < φC < 0.22687.
The lower bound for BS(KT ) is clearly equal to

BSlower = 1− φR log 2− φC log(2π) ≤ 0.56498 . . . .

Knowing the decomposition in K of small primes of Q, we may now apply the linear program-
ming approach to get the upper bound for BS(KT ). This is done using the explicit formula (1.1)
for the Brauer-Siegel ratio along with the basic inequality (1.7) and the inequality

∞∑
m=1

mφpm ≤ φR + 2φC,

taken as the restrictions. This was done using the PARI package. As the calculations are rather
cumbersome we will give here only the final result : BSupper ≈ 0.59748 . . . , and the bound is
attained for φ7 = φ9 = φ13 = 0.03944 . . . , φ19 = 0.01002 . . . .
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Chapitre 2

On logarithmic derivatives of zeta
functions in families of global fields
(with P. Lebacque)

2.1 Introduction

The goal of this chapter is to prove a formula for the limit of logarithmic derivatives of zeta
functions in families of global fields (assuming GRH in the number field case) with an explicit
error term. This result is close in spirit both to the explicit Brauer–Siegel and Mertens theorems
from [56] as well as to the generalized Brauer–Siegel type theorems from chapter 5. We also
improve the error term in the explicit Brauer–Siegel theorem from [56], allowing its dependence
on the family of global fields under consideration.

Throughout the chapter the constants involved in O and � are absolute and effective (and,
in fact, not very large). Let K be a global field that is a finite extension of Q or a finite extension
of Fr(t), in the latter case K = Fr(X) for a smooth absolutely irreducible projective curve over
Fr, where Fr is the finite field with r elements. We will often use the acronyms NF or FF for
the statements proven in the number field and the function field cases respectively. We shall
often omit the index K in our notation in cases when it creates no confusion.

For a number field K let nK and DK denote its degree and its discriminant respectively. Let
gK be the genus of a function field, that is the genus of the corresponding smooth projective
curve and let gK = log

√
|DK | in the number field case. Let P(K) be the set of (finite) places of

K and let Φq = Φq(K) be the number of places of norm q in K, i. e. Φq = |{p ∈ P(K)|Np = q}|.
In the number field case we denote by ΦR = r1 and ΦC = r2 the number of real and complex
places of K respectively.

Recall that the zeta function of a global field K is defined as

ζK(s) =
∏
q

(1− q−s)−Φq ,

where the product runs over all prime powers q. Let us denote by ZK(s) = −
∑
q

Φq log q
qs−1 its

logarithmic derivative. One knows that ζK(s) can be analytically continued to the whole complex
plane and satisfies a functional equation relating ζK(s) and ζK(1 − s). Furthermore, in the
function field case ζK(s) is a rational function of t = r−s. Moreover,

ζK(s) =

g∏
j=1

(πjt− 1)(π̄jt− 1)

(1− t)(1− rt)
, (2.1)
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and |πj | =
√
r (the Riemann hypothesis). For the rest of the chapter we will assume that the

Generalized Riemann Hypothesis is true for zeta functions of number fields, that is all the
non-trivial zeroes of ζK(s) are on the line Re s = 1

2 .
Here are our first main results :

Theorem 2.1.1 (FF). For any function field K, any integer N ≥ 10 and any ε = ε0 + iε1 such
that ε0 = Re ε > 0 we have :

N∑
f=1

fΦrf

r( 1
2

+ε)f − 1
+

1
log r

· ZK
(

1
2

+ ε

)
+

1

r−
1
2

+ε − 1
= O

(
gK
rε0N

(
1 +

1
ε0

))
+O

(
r
N
2

)
.

Theorem 2.1.2 (NF, GRH). For a number field K, an integer N ≥ 10 and any ε = ε0 + iε1
such that ε0 = Re ε > 0 we have :

∑
q≤N

Φq log q

q
1
2

+ε − 1
+ ZK

(
1
2

+ ε

)
+

1
ε− 1

2

=

= O

(
|ε|4 + |ε|

ε20
(g + n logN)

log2N

N ε0

)
+O

(√
N
)
.

Let us explain a little bit the meaning of these theorems. It was known before (see chapter
5 and also below) that the identities (without the error terms) of the theorems are true in the
asymptotic sense (when N =∞ and g =∞ for families of global fields). Our theorems give the
”finite level” versions of these results. They allow to estimate how well the cutoffs of the series
for ZK(s) approximate it away from the domain of convergence of this series (which is Re s > 1)
when we vary K.

We give the proof of these theorems in sections 2.2 and 2.3 respectively. Both proofs are based
on the Weil explicit formula. However, in the number field case the analytical difficulties are
rather considerable, so the explicit formula has to be applied three times with different choices
of test functions. We note that, as indicated in the remarks in the corresponding sections, in
both cases we obtain the new proofs of the basic inequalities from [85] and [87].

Our next results concern families of global fields {Ki} with growing genus gi = g(Ki). Recall
([86],[87]) that a family of global fields is called asymptotically exact if the limits

φα = φα({Ki}) = lim
i→∞

Φα(Ki)
gi

exist for each α which is a power of r in the function field case and each prime power and α = R
and α = C in the number field case. The numbers φα are called the Tsfasman–Vlăduţ invariants
of the family {Ki}. From now on we assume that all our families are asymptotically exact.

We introduce the limit zeta function of a family {Ki} as

ζ{Ki}(s) =
∏
q

(1− q−s)−φq .

We will also denote by Z{Ki}(s) = −
∑
q

φq log q
qs−1 its logarithmic derivative. It follows from the

basic inequality (cf. [85] and [87] or sections 2.2 and 2.3 of this chapter) that both the product
and the sum converge absolutely for Re s ≥ 1

2 and thus define analytic functions for Re s > 1
2 .

Let us first formulate a corollary of theorems 2.1.1 and 2.1.2.

Corollary 2.1.3. For an asymptotically exact family of global fields {Ki}, an integer N ≥ 10
and any ε = ε0 + iε1 such that ε0 = Re ε > 0 the following holds :
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1. in the function field case :

N∑
f=1

fφrf

r( 1
2

+ε)f − 1
+

1
log r

· Z{Ki}
(

1
2

+ ε

)
= O

(
1

rε0N

(
1 +

1
ε0

))
;

2. in the number field case with the assumption of GRH :

∑
q≤N

φq log q

q
1
2

+ε − 1
+ Z{Ki}

(
1
2

+ ε

)
= O

(
(|ε|4 + |ε|) log3N

ε20N
ε0

)
.

This corollary, in particular, implies the convergence of the logarithmic derivatives of zeta
functions of global fields to the logarithmic derivative of the limit zeta function for Re s > 1

2 .
This result (without an explicit error term but with a much easier proof) is also obtained in
chapter 5.

Our next result concerns the behaviour of Z{Ki}(s) at s = 1
2 .

Theorem 2.1.4. For an asymptotically exact family of global fields {Ki} there exists a number
δ > 0 depending on {Ki} such that :

1. in the function field case :

N∑
f=1

fφrf

r
f
2 − 1

+
1

log r
· Z{Ki}

(
1
2

)
= O(r−δN );

2. in the number field case, assuming GRH, we have :∑
q≤N

φq log q
√
q − 1

+ Z{Ki}

(
1
2

)
= O(N−δ).

Let us formulate a corollary of this result which, in a sense, improves the explicit Brauer–
Siegel theorem from [56]. We denote by κKi = Ress=1 ζKi(s) the residue of ζKi(s) at s = 1. We
let κ = κ{Ki} = lim

i→∞

log κKi
gi

. One knows ([86] and [87]) that for an asymptotically exact family

this limit exists and equals log ζ{Ki}(1) (we assume GRH in the number field case). In fact, in
the number field case it can be seen as a generalization of the classical Brauer–Siegel theorem
(cf. [54]).

Corollary 2.1.5. For an asymptotically exact family of global fields {Ki} there exists a number
δ > 0 depending on {Ki} such that :

1. in the function field case :

N∑
f=1

φrf log
rf

rf − 1
= κ+O

(
1

r(
1
2

+δ)N

)
;

2. assuming GRH, in the number field case :∑
q≤N

φq log
q

q − 1
= κ+O

(
1

N
1
2

+δ

)
.

We prove theorem 2.1.4 and both of the corollaries 2.1.3 and 2.1.5 in the section 2.4.
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2.2 Proof of theorem 2.1.1

We will use the following analogue of Weil explicit formula for zeta functions of function
fields, see [74] or [51] (in the case of varieties over finite fields) for a proof.

Theorem 2.2.1. For a sequence v = (vn) such that
∞∑
n=1

vnr
n
2 is convergent, the series

∞∑
n=1

vnr
−n

2
∑
m|n

mΦrm is also convergent and one has the following equality :

∞∑
n=1

vnr
−n

2

∑
f |n

fΦrf = ψv(r1/2) + ψv(r−1/2)−
g∑
j=1

(
ψv

(
πj√
r

)
+ ψv

(
π̄j√
r

))
,

where the πj , π̄j are the inverse roots of the numerator of the zeta function of K, g = gK and

ψv(t) =
∞∑
n=1

vnt
n.

Let us take the test sequence vn = vn(N) = 1
rnε if n ≤ N and 0 otherwise. Introducing it in

the explicit formulae, we get S0(N, ε) = S1(N, ε) + S2(N, ε)− S3(N, ε), where

S0(N, ε) =
N∑
n=1

r−n(
1
2

+ε)∑
f |n

fΦrf ,

S1(N, ε) =
N∑
n=1

rn(
1
2
−ε),

S2(N, ε) =
N∑
n=1

r−n(
1
2

+ε),

S3(N, ε) =
g∑
j=1

N∑
n=1

r−n(
1
2

+ε)(πnj + π̄nj ).

Let us estimate each of the Si.

Calculation of S0 :

Let us first change the summation order in S0 :

S0(N, ε) =
N∑
n=1

r−n(
1
2

+ε)∑
f |n

fΦrf =
N∑
f=1

fΦrf

[N/f ]∑
m=1

1

rfm( 1
2

+ε)
.

Now

R0(N, ε) =
N∑
f=1

fΦrf
1

r(
1
2

+ε)f − 1
− S0(N, ε)

=
N∑
f=1

fΦrf

 1

r(
1
2

+ε)f − 1
−

[N/f ]∑
m=1

r−fm( 1
2

+ε)


=

N∑
f=1

fΦrf

∞∑
m=[N/f ]+1

r−fm( 1
2

+ε).
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Taking the absolute values, we can assume that ε is real. Summing the geometric series, we
obtain

0 ≤
N∑
f=1

fΦrf
1

r(
1
2

+ε)f − 1
− S0(N, ε) ≤

N∑
f=1

fΦrf r
−( 1

2
+ε)[N/f ]f 1

r(
1
2

+ε)f − 1
.

We now use the Weil inequality fΦrf ≤ rf + 1 + 2g
√
rf , and split the above sum into two

parts in the following way. For f > [N/2] we have [N/f ] = 1 and for f ≤ [N/2] we use the
inequality f [N/f ] ≥ N − f.

|R0(N, ε)| ≤
N∑
f=1

(
1 + rf + 2g

√
rf
)

rf(
1
2

+ε)[N/f ]
(
r(

1
2

+ε)f − 1
)

≤ 8
[N/2]∑
f=1

r(
1
2
−ε)f + 2g r−fε

r(N−f)( 1
2

+ε)
+ 6

N∑
f>[N/2]

r(
1
2
−ε)f + 2g r−fε

rf(
1
2

+ε)

≤ 6

rN( 1
2

+ε)

[N/2]∑
f=1

(rf + 2 g r
f
2 ) + 6

∑
f>[N/2]

(r−2εf + 2 g r−( 1
2

+2ε)f )

≤ 6

rN( 1
2

+ε)

(
r
N
2

+1 − r
r − 1

+ 2g
r
N
4

+ 1
2 − r

1
2

r
1
2 − 1

)
+

6r−εN

1− r−2ε
+

12gr−
N
4
−εN

1− r−
1
2
−2ε

≤ 48
rεN

(
2gr−

N
4 +

1
rε − 1

+ 1
)
≤ 96
rεN

(
g r−

N
4 +

1 + ε

ε

)
.

Calculation of S1 :

0 ≤ |S1(N, ε)| ≤ r
1
2
−ε0 · r

( 1
2
−ε0)N − 1

r
1
2
−ε0 − 1

≤ 4rN/2,

since the function t 7→ t · tN−1
t−1 is a continuous and increasing.

Calculation of S2 :

0 ≤ |S2(N, ε)| ≤ 1− r−( 1
2

+ε0)N

r
1
2

+ε0 − 1
≤ 4.

Calculation of S3 :

R3(N, ε) = S3(N, ε)−
g∑
j=1

(
πj

r
1
2

+ε − πj
+

π̄j

r
1
2

+ε − π̄j

)
= −

g∑
j=1

∞∑
n=N+1

(
πj

r
1
2

+ε

)n
+
(

π̄j

r
1
2

+ε

)n
.

The absolute value of the right hand side can be bounded using the fact that |πj | ≤ r
1
2 :

|R3(N, ε)| =

∣∣∣∣∣∣
g∑
j=1

∞∑
n=N+1

(
πj

r
1
2

+ε

)n
+
(

π̄j

r
1
2

+ε

)n∣∣∣∣∣∣ ≤ 2g
r−Nε0

rε0 − 1
≤ 4g

r−Nε0

ε0
.
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From the expression (2.1) of ζK(s) as rational function in t = r−s we can easily deduce the
following formula for its logarithmic derivative :

1
log r

· ZK
(

1
2

+ ε

)
= − 1

r
1
2

+ε − 1
− 1

r−
1
2

+ε − 1
+

g∑
j=1

(
πj

r
1
2

+ε − πj
+

π̄j

r
1
2

+ε − π̄j

)
.

Putting it all together we get the statement of the theorem.

Remark 2.2.1. Using our theorem we can easily reprove the basic inequality from [86]. We take
a real ε < 1

4 , and remark that

1
log r

· ZK
(

1
2

+ ε

)
+

1

r
1
2

+ε − 1
+

1

r−
1
2

+ε − 1
+ g =

g∑
j=1

(
πj

r
1
2

+ε − πj
+

π̄j

r
1
2

+ε − π̄j
+ 1

)
≥ 0,

as
πj

r
1
2

+ε − πj
+

π̄j

r
1
2

+ε − π̄j
+ 1 =

r1+2ε − |πj |2

(r
1
2

+ε − πj)(r
1
2

+ε − π̄j)
≥ 0.

Now, from the theorem we get that

N∑
f=1

fΦrf

r( 1
2

+ε)f − 1
≤ g +O

( g

εrεN

)
+O(r

N
2 ).

We divide by g and first let g →∞ (varying K), after that we let N →∞ and finally we take
the limit when ε→ 0. In doing so we obtain the basic inequality from [85] :

∞∑
f=1

fφrf

r
f
2 − 1

≤ 1.

2.3 Proof of theorem 2.1.2

Our starting point will be the Weil explicit formula, the proof of which can be found in [70]
or in [54, chap. XVII] (with slightly more general conditions on the test functions).

Consider the class (W ) of even real valued functions, satisfying the following conditions :

1. there exists ε > 0 such that
∫∞

0 F (x)e( 1
2

+ε)x dx is convergent in the sense of Cauchy ;

2. there exists ε > 0 such that F (x)e( 1
2

+ε)x has bounded variation ;

3. F (0)−F (x)
x has bounded variation ;

4. for any x we have F (x) = F (x−0)+F (x+0)
2 .

For such a function F we define

φ(s) =
∫ +∞

−∞
F (x)e(s− 1

2
)x dx. (2.2)

The Weil explicit formula for Dedekind zeta functions of number fields can be stated as
follows :

Theorem 2.3.1 (Weil). Let K be a number field. Let F belong to the class (W ) and let φ(s)
be defined by (2.2). Then the sum

∑
| Im ρ|<T

φ(ρ), where ρ runs through the non-trivial zeroes of

the Dedekind zeta-function of K, is convergent when T →∞ and the limit
∑
ρ
φ(ρ) is given by :
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∑
ρ

φ(ρ) = F (0)
(

2g − n(γ + log 8π)− r1
π

2

)
+ 4

∫ ∞
0

F (x) ch
(x

2

)
+ r1

∫ ∞
0

F (0)− F (x)
2 ch(x2 )

dx+ n

∫ ∞
0

F (0)− F (x)
2 sh(x2 )

dx− 2
∑
p,m

log Np

Np
m
2

F (m log Np), (2.3)

where the last sum is taken over all prime ideals p in K and all integers m ≥ 1.

First of all, we remark that, if we have a complex valued function F (x) with both real and
imaginary parts F0(x) and F1(x) being even and lying in (W ), we can apply (2.3) separately to
F0(x) and F1(x). Thus the explicit formula, being linear in the test function, is also applicable
to the initial complex valued function F (x).

We apply the explicit formula to the function defined by

FN,ε(x) =

{
e−ε|x| if |x| < log(N + 1

2),
0 if |x| > log(N + 1

2)

(here N + 1
2 is take to avoid counting some of the terms with the factor 1

2).
Next, we estimate each of the terms in (2.3).

2.3.1 The sum over the primes

∑
p,m

log Np

Np
m
2

FN,ε(m log Np) =
∑

Npm≤N

log Np

Np( 1
2

+ε)m

=
∑

Np≤N

log Np

Np
1
2

+ε − 1
−
∑

Np≤N
log Np

∑
m> logN

log Np

1

Np( 1
2

+ε)m
.

We have to estimate the sum :

∆(N, ε) =
∑

Np≤N
log Np

∑
m> logN

log Np

1

Np( 1
2

+ε)m
.

Taking the absolute values, we can assume that ε is real. Calculating the remainder term of
the geometric series, we get :

∆(N, ε) ≤ (2 +
√

2)
∑

Np≤N

log Np

Np
( 1
2

+ε)([ logN
log Np

]+1)

(for (1−Np−1/2−ε)−1 ≤ (1− 2−1/2)−1 ≤
√

2(1 +
√

2)).
Let us split the sum into two parts according as whether Np >

√
N or not. Taking into

account that log Np[logN/ log Np] ≥ logN − log Np for log Np ≤ [log
√

Np], we obtain :

∆(N, ε) ≤ (2 +
√

2)

 ∑
Np≤

√
N

log Np

elog N( 1
2

+ε)
+

∑
√
N<Np≤N

log Np

Np(1+2ε)

 .

Write
∆1(N, ε) =

∑
Np≤

√
N

log Np

elog N( 1
2

+ε)
,
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∆2(N, ε) =
∑

√
N<Np≤N

log Np

Np(1+2ε)
.

For ∆1(N, ε) we have :

∆1(N, ε) ≤ 1

N
1
2

+ε

∑
Np≤

√
N

log Np.

The last sum can be estimated with the help of Lagarias and Odlyzko results (which use GRH,
cf. [52, Theorem 9.1]) :∑

Np≤
√
N

log Np ≤
∑

Npk≤
√
N

log Np =
√
N +O(N

1
4 logN(g + n logN))

with an effectively computable absolute constant in O. Thus we get :

∆1(N, ε) ≤ 2 +
√

2
N ε

+ a0
g logN + n log2N

N
1
4

+ε
.

We can estimate the sum ∆2(N, ε) as follows :

∆2(N, ε) ≤
∫ ∞
√
N

log t
t1+2ε

dπ(t),

where π(t) is the prime counting function π(t) =
∑

Np≤t
1. As before, according to Lagarias and

Odlyzko, π(t) =
∫ t

2
dx

log x + δ(t), with |δ(t)| ≤ a1

√
t(g + n log t). Thus, substituting, we get :

∆2(N, ε) ≤
∫ ∞
√
N
t−1−2ε dt+ 2|δ(

√
N)| logN

N
1
2

+ε
+
∣∣∣∣∫ ∞√

N
δ(t)

1− (1 + 2ε) log t
t2+2ε

dt

∣∣∣∣ .
We deduce that

∆2(N, ε) ≤ 1
2εN ε

+ 2a1(g + n logN)
logN

N
1
4

+ε
+
∫ ∞
√
N
a1(g + n log t)

|1− (1 + 2ε) log t|
t

3
2

+2ε
dt.

For N ≥ 8 we have :∫ ∞
√
N
a1(g + n log t)

|1− (1 + 2ε) log t|
t

3
2

+2ε
dt ≤

∫ ∞
√
N
a1(g + n log t)

(1 + 2ε) log t

t
3
2

+2ε
dt.

Integrating by parts, we can find that∫ ∞
√
N

log t

t
3
2

+2ε
dt =

logN

2(1
2 + 2ε)N

1
4

+ε
+

1

(1
2 + 2ε)2N

1
4

+ε
,

and ∫ ∞
√
N

log2 t

t
3
2

+2ε
dt =

log2N

4(1
2 + 2ε)N

1
4

+ε
+

logN

2(1
2 + 2ε)2N

1
4

+ε
+

1

(1
2 + 2ε)3N

1
4

+ε
.

We conclude that the following estimate holds :

∆2(N, ε) ≤ 1
2εN ε

+ a2

(
n log2N

N
1
4

+ε
+
g logN

N
1
4

+ε

)
.

Putting everything together, we see that :

|∆(N, ε)| � 1
ε0N ε0

+
logN

N
1
4

+ε0
(n logN + g). (2.4)
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2.3.2 Archimedean terms

First of all,

∣∣∣∣∫ ∞
0

FN,ε(x) ch
(x

2

)
dx

∣∣∣∣ ≤ ∫ log(N+ 1
2

)

0
e( 1

2
−ε0)x dx =

(N + 1
2)

1
2
−ε0 − 1

1
2 − ε0

�
√
N. (2.5)

Let

IN,ε =
∫ ∞

0

1− FN,ε(x)
2 sh(x2 )

dx

and

I∞,ε =
∫ ∞

0

1− e−εx

2 sh(x2 )
dx.

We have for N ≥ 4 :

|I∞,ε − IN,ε| ≤
∫ ∞

logN

2
e
x
2

dx ≤ 4√
N
.

Now,

I∞,ε =
∫ ∞

0

(
e−

x
2

1− e−x
− e−( 1

2
+ε)x

1− e−x

)
dx

=
∫ ∞

0

((
e−

x
2

1− e−x
− e−x

x

)
+

(
e−x

x
− e−( 1

2
+ε)x

1− e−x

))
dx

= ψ

(
1
2

+ ε

)
− ψ

(
1
2

)
,

as

ψ(x) =
Γ′(x)
Γ(x)

=
∫ ∞

0

(
e−t

x
− e−xt

1− e−t

)
dt.

The second integral

JN,ε =
∫ ∞

0

1− FN,ε(x)
2 ch(x2 )

dx

can be estimated along the same lines using an integral from [25, 3.541] :∫ ∞
0

e−εx

ch(x2 )
dx = ψ

(
1
4

+
ε

2

)
− ψ

(
3
4

+
ε

2

)
.

Taking into account that ψ(2x) = 1
2

(
ψ(x) + ψ

(
x+ 1

2

))
+ log 2, we finally obtain :

JN,ε =
π

2
+ log 2 + ψ

(
1
4

+
ε

2

)
− ψ

(
1
2

+ ε

)
+O

(
1√
N

)
,

IN,ε = γ + log 4 + ψ

(
1
2

+ ε

)
+O

(
1√
N

)
.

(2.6)
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2.3.3 The sum over the zeroes : the main term

Let us estimate now the sum
∑
ρ
φ(ρ) over zeroes of ζK(s). Let ρ = 1

2 + it be a zero of the

zeta function of K on the critical line. Put y = log(N + 1
2). We have

φ(ρ) =
∫ y

−y
e−ε|x|+itx dx =

∫ y

0
e(−ε+it)x dx+

∫ y

0
e(−ε−it)x dx,

so
φ(ρ) =

2
ε2 + t2

(ε+ e−εy(−ε cos(ty) + t sin(ty))).

We divide the sum over ρ into three parts :

S1(ε) =
∑

ρ= 1
2

+it

ε

ε2 + t2
;

S2(y, ε) =
∑

ρ= 1
2

+it

cos(ty)
ε2 + t2

;

S3(y, ε) =
∑

ρ= 1
2

+it

t sin(ty)
ε2 + t2

;

so that ∑
ρ

φ(ρ) = 2S1(ε)− 2εe−εyS2(y, ε) + 2e−εyS3(y, ε).

Let us relate the sum S1(ε) to ZK(s), the logarithmic derivative of ζK(s). Stark’s formula
(cf. [80, (9)]) gives us the following :∑

ρ

1
s− ρ

=
1

s− 1
+

1
s

+ g − n

2
log π +

r1

2
ψ
(s

2

)
+ r2(ψ(s)− log 2) + ZK(s), (2.7)

where as before ψ(s) = Γ′(s)
Γ(s) . Specializing at s = 1

2 + ε, we obtain :

∑
ρ= 1

2
+it

ε

ε2 + t2
=

1
ε− 1

2

+
1

ε+ 1
2

+ g − n

2
log π − r2 log 2

+
r1

2
ψ

(
1
4

+
ε

2

)
+ r2ψ

(
1
2

+ ε

)
+ ZK

(
1
2

+ ε

)
. (2.8)

We note that the archimedean factors from the Stark formula and from the initial Weil
explicit formula cancel each other. We are left to prove that S2(y, ε) and S3(y, ε) are sufficiently
small.

2.3.4 The sum over the zeroes : the remainder term.

To estimate
S2(y, ε) =

∑
ρ= 1

2
+it

cos(ty)
ε2 + t2

we take the absolute values of all the terms in the sum so that

|S2(y, ε)| ≤
∑

ρ= 1
2

+it

1
|ε2 + t2|

≤
∑

ρ= 1
2

+it

n(j)
ε20 + (t− |ε1|)2

, (2.9)
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where n(j) is the number of zeroes with |t− j| < 1. A standard estimate from [52, Lemma 5.4]
yields n(j)� g + n log(j + 2), thus

|S2(y, ε)| � g + n log(|ε1|+ 2)
ε20

+ g + n

|ε1|+1∑
j=1

log j
|ε1|+ 2− j

+ g + n log(|ε1|+ 2)

� (g + n log2(|ε1|+ 2))
(

1 +
1
ε20

)
.

Let us finally estimate

S3(y, ε) =
∑

ρ= 1
2

+it

t sin(ty)
ε2 + t2

.

We have

S3(y, ε) =
∑

ρ= 1
2

+it

sin ty
t
−

∑
ρ= 1

2
+it

ε2 sin(ty)
t(ε2 + t2)

= A(y)−B(y, ε).

The series for the formal derivative of B(y, ε) with respect to y is given by

∑
ρ= 1

2
+it

ε2 cos(ty)
ε2 + t2

.

Using the estimates for S2(y, ε) we deduce that on any compact subset of [0,+∞) this series
is absolutely and uniformly convergent to B′(y), and we have |B′(y, ε)| � |ε|2(g + n log2(|ε1|+
2))
(

1 + 1
ε20

)
. Thus we see that |B(y)| � y|ε|2(g + n log2(|ε1|+ 2))

(
1 + 1

ε20

)
, since B(0, ε) = 0.

2.3.5 The sum over the zeroes : the difficult part.

We are left to estimate the term A(y).
Let us recall a particular case of Weil explicit formula which is due to Landau (cf. [53]) :∑

ρ

xρ

ρ
= x−Ψ(x)− r log x− b− r1

2
log(1− x−2)− r2 log(1− x−1), (2.10)

where Ψ(x) =
∑

Npk≤x
log Np, b is the constant term of the expansion of ZK(s) at 0, r = r1 +r2−1

and x is not a prime power. This formula is stated in [53] for x ≥ 3
2 , however, applying theorem

2.3.1 to the function

Fx(y) =

{
e|y|/2 if |y| < log x,
0 if |y| > log x,

one can see that it is valid for any x > 1. We also note that by an effective version of the prime
ideals theorem ([52, Theorem 9.1]) we have the following estimate :

Ψ(x)− x = O
(
x

1
2 log x(g + n log x)

)
. (2.11)

Now, we introduce C(x) =
∑
ρ

xρ

ρ , D(x) =
∑
ρ 6= 1

2

xρ

ρ− 1
2

and E(x) = D(x) − C(x). From (2.10)

and (2.11) we see that C(x) is an integrable function on compact subsets of (1,+∞) . Using
the arguments similar to those from the previous subsection we can deduce that the series for
E(x) is absolutely and uniformly convergent on compact subsets of [1,+∞) and thus E(x) is
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a continuous function on this interval. From this we conclude that the series for D(x) is also
convergent to a locally integrable function.

If we put x = ey, we get

ReD(ey) = e
y
2

∑
ρ 6= 1

2

sin(ty)
t

,

which is equal to e
y
2A(y) up to a term corresponding to a possible zero of ζK(s) at ρ = 1

2 .
Since the series for C(x) is not uniformly convergent, we will have to work with distributions

defined by C(x), D(x) and E(x). See [72] for the basic notions and results used here. From the
fact that a convergent series of distributions can be differentiated term by term we deduce that
the following equality holds :

d

dx

E(x)√
x

=
C(x)

2
√
x3
.

We apply (2.10) to the right hand side of this formula and integrate from 1 + δ to x (here
δ > 0). The obtained equality will be valid in the sense of distributions, thus almost everywhere
for the corresponding locally integrable functions defining these distributions. Since E(x) is
continuous, we see that the resulting identity

E(x)√
x

= E(1 + δ) +
∫ x

1+δ

t−Ψ(t)

2t
3
2

dt− r
∫ x

1+δ

log t

2t
3
2

dt

−
∫ x

1+δ

b

2t
3
2

dt− r1

2

∫ x

1+δ

log (1− t−2)

2t
3
2

dt− r2

∫ x

1+δ

log (1− t−1)

2t
3
2

dt

actually holds pointwise on [1 + δ,+∞) . We use (2.11) to estimate t − Ψ(t). It is easily seen
that all the integrals converge when δ → 0. From [53, 10.RH] it follows that b� g + n.

E(1) =
∑
ρ 6= 1

2

1
ρ− 1

2

−
∑
ρ

1
ρ

= −1
2

∑
ρ= 1

2
+it

1
1
4 + t2

,

the first sum being zero as the term in ρ and 1 − ρ cancel each other. An estimate for the
last sum can be made using (2.9). This gives |E(1)| � g + n. Putting it all together we see
that |E(x)| �

√
x log2 x(g + n log x). The estimate |C(x)| �

√
x log2 x(n+ g) can be obtained

directly using (2.11). Thus, we conclude that |A(y)| � y2(g + ny).
Finally, combining all together we get :∑

ρ

φ(ρ) = 2S1(ε) +O

(
|ε|4 + |ε|

ε20
(g + n logN)

log2N

N ε0

)
.

This estimate together with (2.4), (2.5), (2.6) and (2.8) completes the proof of the theorem.

Remark 2.3.1. Using our theorem we can derive the basic inequality from [87]. Indeed, we apply
the formula (2.8) to express ZK

(
1
2 + ε

)
via

∑
ρ= 1

2
+it

ε
ε2+t2

plus some archimedean terms. For a

real positive ε < 1
4 the latter sum is non-negative, thus we see that

∑
q≤N

Φq log q

q
1
2

+ε − 1
+
n

2
log π + r2 log 2− r1

2
ψ

(
1
4

+
ε

2

)
− r2ψ

(
1
2

+ ε

)

≤ g +O

(
(g + n logN)

log2N

εN ε

)
+O

(√
N
)
.
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Now, we divide by g and first let g → ∞ (varying K), after that we let N → ∞ and
finally we take the limit when ε → 0. Taking into account that ψ(1

2) = −γ − 2 log 2 and
ψ(1

4) = −π
2 − γ − 3 log 2, we obtain the basic inequality from [85] :

∑
q

φq log q
√
q − 1

+ φR

(
log(2

√
2π) +

π

4
+
γ

2

)
+ φC (log(8π) + γ) ≤ 1.

Remark 2.3.2. The choice of the test function FN,ε(x) in the explicit formula is not accidental.
Indeed, the resulting formulas ”approximate” the Stark formula (2.7) when N →∞.

2.4 Proof of theorem 2.1.4 and of the corollaries

We will carry out the proofs in the function field case, the calculations in the number field
case being exactly the same.

Proof of the corollary 2.1.3 : Assume first that ε 6= 1
2 + 2πik

log r , k ∈ Z. We note that

∣∣∣∣∣∣
∞∑
f=1

fφrf

r( 1
2

+ε)f − 1
+

1
gj log r

ZKj

(
1
2

+ ε

)∣∣∣∣∣∣ ≤
≤

∣∣∣∣∣∣
∞∑

f=N+1

fφrf

r( 1
2

+ε)f − 1

∣∣∣∣∣∣+
N∑
f=1

f
∣∣∣Φrfgj − φrf ∣∣∣
r( 1

2
+ε)f − 1

+
1
gj

∣∣∣∣∣∣
N∑
f=1

fΦrf

r( 1
2

+ε)f − 1
+

1
log r

ZKj

(
1
2

+ ε

)∣∣∣∣∣∣ .
Given δ > 0 we choose an integer N such that the first sum is less than δ (this is possible

due to the basic inequality) and such that 1
rε0N

(
1 + 1

ε0

)
≤ δ. Now, taking g sufficiently large,

and using theorem 2.1.1 as well as the convergence of Φ
rf

gj
to φrf , we conclude that the whole

sum is � δ. Thus, we deduce that

lim
j→∞

ZKj
(

1
2 + ε

)
gj

= Z{Kj}

(
1
2

+ ε

)
. (2.12)

Now, the corollary immediately follows from theorem 2.1.1 and (2.12). Though we initially
assumed that ε 6= 1

2 + 2πik
log r , the statement still holds for ε = 1

2 + 2πik
log r as all the function are

continuous (and even analytic) for Re ε > 0.

Remark 2.4.1. The formula (2.12) no longer holds when ε = 0 as can be seen from the fact that
ZK

(
1
2

)
= gK − 1. In fact, the identity holds if and only if our family is asymptotically optimal.

Whether it holds or not for the logarithm of ζK(s) and not for its derivative seems to be very
difficult to say at the moment. Even for quadratic fields this question is far from being obvious.
It is known that in the number field case there exists a sequence (di) in N of density at least 1

2
such that

lim
i→∞

log ζQ(
√
di)

(1
2)

log di
= 0

(cf. [43]). The techniques of the evaluation of mollified moments of Dirichlet L- functions used
in that paper is rather involved. In general one can prove an upper bound for the limit (cf.
chapter 5). This is analogous to the ”easy” inequality in the classical Brauer–Siegel theorem.

The interest of the question about the behaviour of logZK
(

1
2

)
can be in particular explained

by its connection to the behaviour of the order of the Shafarevich–Tate group and the regulator
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of constant supersingular elliptic curves over function fields, the connection being provided by
the Birch and Swinnerton–Dyer conjecture. In general, a similar question can be asked about
the behaviour of these invariants in arbitrary families of elliptic curves. Some discussion on the
problem is given in [49] (beware, however, that the proof of the main result there can not be
seen as a correct one as the change of limits, which is a key point, is not justified).

Proof of theorem 2.1.4 : It follows from the basic inequality that the series defining log ζ{Ki}(s)
converges absolutely for Re s ≥ 1

2 . The function log ζ{Ki}(s) has a Dirichlet series expansion
with positive coefficients, converging for Re s ≥ 1

2 . Thus, from a standard theorem on Dirichlet
series (cf. [42, Lemma 5.56]), it must converge in some open domain Re s > 1

2 − δ0 for δ0 > 0,
defining an analytic function there. It follows that in the same domain the series for Z{Ki}(s)
converges. Taking any δ with 0 < δ < δ0 we obtain :∣∣∣∣∣∣

N∑
f=1

fφrf

r
f
2 − 1

− 1
log r

Z{Ki}

(
1
2

)∣∣∣∣∣∣ =

∣∣∣∣∣∣
∞∑

f=N+1

fφrf

r(
1
2
−δ)f − 1

· r
( 1

2
−δ)f − 1

r
f
2 − 1

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∞∑
f=1

fφrf

r(
1
2
−δ)f − 1

∣∣∣∣∣∣ · r
( 1

2
−δ)N − 1

r
N
2 − 1

= O(r−δN ).

This gives the necessary result.

Proof of the corollary 2.1.5 : We use theorem 2.1.4 to obtain the necessary estimate much in
the same spirit as in the proof of theorem 2.1.4 itself. Using the function field Brauer–Siegel
theorem to find the value for κ, we get :∣∣∣∣∣∣

N∑
f=1

φrf log
rf

rf − 1
− κ

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∞∑

f=N+1

fφrf

r
f
2 − 1

· (r
f
2 − 1) · log

rf

rf − 1

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∞∑

f=N+1

fφrf

r
f
2 − 1

∣∣∣∣∣∣ · (rN2 − 1) · log
rN

rN − 1

= O(r−δN ) ·O
(
r−

N
2

)
.

Indeed, N 7→ (r
N
2 − 1) log rN

rN−1
is decreasing for N ≥ 2. The required estimate follows.

Remark 2.4.2. Actually, our method gives an easy and conceptual proof of the explicit version
of the Brauer–Siegel theorem from [56] (which is roughly speaking the statement of corollary
2.1.5 with δ = 0). It shows that the rate of convergence in the Brauer–Siegel theorem essentially
depends on how far to the left the limit zeta function ζ{Ki}(s) is analytic. In the number field
case we even save log2N in the estimate of the error term compared to what is proven in [56].
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Chapitre 3

On the generalizations of the
Brauer–Siegel theorem

3.1 Introduction

Let K be an algebraic number field of degree nK = [K : Q] and discriminant DK . We define
the genus of K as gK = log

√
DK . By hK we denote the class-number of K, RK denotes its

regulator. We call a sequence {Ki} of number fields a family if Ki is non-isomorphic to Kj for
i 6= j. A family is called a tower if also Ki ⊂ Ki+1 for any i. For a family of number fields we
consider the limit

BS(K) := lim
i→∞

log(hKiRKi)
gKi

.

The classical Brauer–Siegel theorem, proved by Brauer (see [4]) can be stated as follows :

Theorem 3.1.1 (Brauer–Siegel). For a family K = {Ki} we have

BS(K) := lim
i→∞

log(hKiRKi)
gKi

= 1

if the family satisfies two conditions :
(i) lim

i→∞

nKi
gKi

= 0;

(ii) either the generalized Riemann hypothesis (GRH) holds, or all the fields Ki are normal
over Q.

The initial motivation for the Brauer–Siegel theorem can be traced back to a conjecture of
Gauss :

Conjecture 3.1.2 (Gauss). There are only 9 imaginary quadratic fields with class number equal
to one, namely those having their discriminants equal to −3, −4, −7, −8, −11, −19, −43, −67,
−163.

The first result towards this conjecture was proven by Heilbronn in [29]. He proved that
hK →∞ as DK → −∞. Moreover, together with Linfoot [30] he was able to verify that Gauss’
list was complete with the exception of at most one discriminant. However, this “at most one”
part was completely ineffective. The initial question of Gauss was settled independently by
Heegner [28], Stark [79] and Baker [2] (initially the paper by Heegner was not acknowledged as
giving the complete proof). We refer to [90] for a more thorough discussion of the history of the
Gauss class number problem.
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A natural question was to find out what happens with the class number in the case of
arbitrary number fields. Here the situation is more complicated. In particular a new invariant
comes into play : the regulator of number fields, which is very difficult to separate from the
class number in asymtotic considerations (in particular, for this reason the other conjecture of
Gauss on the infinitude of real quadratic fields having class number one is still unproven). A
major step in this direction was made by Siegel [77] who was able to prove Theorem 3.1.1 in
the case of quadratic fields. He was followed by Brauer [4] who actually proved what we call the
classical Brauer–Siegel theorem.

Ever since a lot of different aspects of the problem have been studied. For example, the
major difficulty in applying the Brauer–Siegel theorem to the class number problem is its in-
effectiveness. Thus many attempts to obtain good explicit bounds on hKRK were undertaken.
In particular we should mention the important paper of Stark [80] giving an explicit version of
the Brauer–Siegel theorem in the case when the field contains no quadratic subfields. See also
some more recent papers by Louboutin [59], [60] where better explicit bounds are proven in
certain cases. Even stronger effective results were needed to solve (at least in the normal case)
the class-number-one problem for CM fields, see [33], [68], [3].

In another direction, assuming the generalized Riemann hypothesis (GRH) one can obtain
more precise bounds on the class number then those given by the Brauer–Siegel theorem. For
example in the case of quadratic fields we have hK << D

1/2
K (log logDK/ logDK). In particular

they are known to be optimal in many cases (see [14], [15], [9]).
A full survey of the problems stemming from the study of the Brauer–Siegel type questions

definitely lies beyond the scope of this chapter. Our goal is more modest. Here we survey the
results that generalize the classical Brauer–Siegel theorem. In §3.2 the case of families of number
fields violating one (or both) of the conditions (i) and (ii) of theorem 3.1.1 is discussed. In
particular we introduce the notion of Tsfasman–Vlăduţ invariants of global fields that allow to
express the Brauer–Siegel limit in general. In §3.3 we survey the known results and conjectures
about the Brauer–Siegel type statements in the higher dimensional situation. Finally, in the
last §3.4 we prove a Brauer–Siegel type result (theorem 3.3.1) for families of varieties over finite
fields. This theorem expresses the asymptotic properties of the residue at s = d of the zeta
function of smooth projective varieties over finite fields via the asymptotics of the number of
Fqm-points on them.

3.2 The case of global fields : Tsfasman–Vlăduţ approach

A natural question is whether one can weaken the conditions (i) and (ii) of theorem 3.1.1.
The first condition seems to be the most restrictive one. Tsfasman and Vlăduţ were able to deal
with it first in the function field case [85], [86] and then in the number field case [87] (which
was as usual more difficult, especially from the analytical point of view). It turned out that one
has to take in account non-archimedian place to be able to treat the general situation. Let us
introduce the necessary notation in the number field case (for the function field case see §3.3).

For a prime power q we set

Φq(Ki) := |{v ∈ P (Ki) : Norm(v) = q}|,

where P (Ki) is the set of non-archimedian places of Ki. Taking in account the archimedian
places we also put ΦR(Ki) = r1(Ki) and ΦC(Ki) = r2(Ki), where r1 and r2 stand for the
number of real and (pairs of) complex embeddings.

We consider the set A = {R,C; 2, 3, 4, 5, 7, 8, 9, . . .} of all prime powers plus two auxiliary
symbols R and C as the set of indices.
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Definition 3.2.1. A family K = {Ki} is called asymptotically exact if and only if for any α ∈ A
the following limit exists :

φα = φα(K) := lim
i→∞

Φα(Ki)
gKi

.

We call an asymptotically exact family K asymptotically good (respectively, bad) if there exists
α ∈ A with φα > 0 (respectively, φα = 0 for any α ∈ A). The φα are called the Tsfasman–Vlăduţ
invariants of the family {Ki}.

One knows that any family of number fields contains an asymptotically exact subfamily
so the condition on a family to be asymptotically exact is not very restrictive. On the other
hand, the condition of asymptotical goodness is indeed quite restrictive. It is easy to see that a
family is asymptotically bad if and only if it satisfies the condition (i) of the classical Brauer–
Siegel theorem. In fact, before the work of Golod and Shafarevich [24] even the existence of
asymptotically good families of number fields was unclear. Up to now the only method to
construct asymptotically good families in the number field case is essentially based on the ideas
of Golod and Shafarevich and consists of the usage of classfield towers (quite often in a rather
elaborate way). This method has the disadvantage of beeing very inexplicit and the resulting
families are hard to controll (ex. splitting of the ideals, ramification, etc.). In the function
field case we dispose of a much wider range of constructions such as the towers coming from
supersingular points on modular curves or Drinfeld modular curves ([40], [89]), the explicit
iterated towers proposed by Garcia and Stichtenoth [18], [19] and of course the classfield towers
as in the number field case (see [74] for the treatement of the function field case).

This partly explains why so little is known about the above set of invariants φα. Very few
general results about the structure of the set of possible values of (φα) are available. For instance,
we do not know whether the set {α | φα 6= 0} can be infinite for some family K. We refer to [57]
for an exposition of most of the known results on the invariants φα.

Before formulating the generalization of the Brauer–Siegel theorem proven by Tsfasman
and Vlăduţ in [87] we have to give one more definition. We call a number field almost normal
if there exists a finite tower of number fields Q = K0 ⊂ K1 ⊂ · · · ⊂ Km = K such that all the
extensions Ki/Ki−1 are normal.

Theorem 3.2.1 (Tsfasman–Vlăduţ). Assume that for an asymptotically good tower K any of
the following conditions is satisfied :

– GRH holds
– All the fields Ki are almost normal over Q.

Then the limit BS(K) = lim
i→∞

log(hKiRKi )

gKi
exists and we have :

BS(K) = 1 +
∑
q

φq log
q

q − 1
− φR log 2− φC log 2π,

the sum beeing taken over all prime powers q.

We see that in the above theorem both the conditions (i) and (ii) of the classical Brauer–
Siegel theorem are weakend. A natural supplement to the above theorem is the following result
obtained in [91] (see also chapter 1) :

Theorem 3.2.2 (Zykin). Let K = {Ki} be an asymptotically bad family of almost normal
number fields (i. e. a family for which nKi/gKi → 0 as i→∞). Then we have BS(K) = 1.

One may ask if the values of the Brauer–Siegel ratio BS(K) can really be different from one.
The answer is “yes”. However, due to our lack of understanding of the set of possible (φα) there
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are only partial results. Under GRH one can prove (see [87]) the following bounds on BS(K) :
0.5165 ≤ BS(K) ≤ 1.0938. The existence bounds are weaker. There is an example of a (class
field) tower with 0.5649 ≤ BS(K) ≤ 0.5975 and another one with 1.0602 ≤ BS(K) ≤ 1.0938
(see [87] and [91]). Our inability to get the exact value of BS(K) lies in the inexplicitness of the
construction : as it was said before, class field towers are hard to control. A natural question is
whether all the values of BS(K) between the bounds in the examples are attained. This seems
difficult to prove at the moment though one may hope that some density results (i. e. the density
of the values of BS(K) in a certain interval) are within reach of the current techniques.

Let us formulate yet another version of the generalized Brauer–Siegel theorem proven by
Lebacque in [56]. It assumes GRH but has the advantage of beeing explicit in a certain (unfor-
tunately rather weak) sense :

Theorem 3.2.3 (Lebacque). Let K = {Ki} be an asymptotically exact family of number fields.
Assume that GRH in true. Then the limit BS(K) exists, and we have :

∑
q≤x

φq log
q

q − 1
− φR log 2− φC log 2π = BS(K) +O

(
log x√
x

)
.

This theorem is an easy corollary of the generalised Mertens theorem proven in [56]. We
should also note that Lebacque’s apporoach leads to a unified proof of theorems 3.2.1 and 3.2.2
with or without the assumption of GRH.

3.3 Varieties over global fields

Once we are in the realm of higher dimensional varieties over global fields the question of
finding a proper analogue of the Brauer–Siegel theorem becomes more complicated and the
answers which are currently available are far from being complete. Here we have essentially
three approaches : the one by the author (which leads to a fairly simple result), another one
by Kunyavskii and Tsfasman and the last one by Hindry and Pacheco (which for the moment
gives only plausible conjectures). We will present all of them one by one.

The proof of the cassical Brauer–Siegel theorem as well as those of its generalisations dis-
cussed in the previous section passes through the residue formula. Let ζK(s) be the Dedekind
zeta function of a number field K and κK its residue at s = 1. By wK we denote the number
of roots of unity in K. Then we have the following classical residue formula :

κK =
2r1(2π)r2hKRK

wK
√
DK

.

This formula immediately reduces the proof of the Brauer–Siegel theorem to an appropriate
asymptotical estimate for κK as K varies in a family (by the way, this makes clear the connection
with GRH which appears in the statement of the Brauer–Siegel theorem). So, in the higher
dimensional situation we face two completely different problems :

(i) Study the asymptotic properties of a value of a certain ζ or L-function.
(ii) Find an (arithmetic or geometric) interpretation of this value.
One knows that just like in the case of global fields in the d-dimensional situation zeta

function ζX(s) of a variety X has a pole of order one at s = d. Thus the first idea would be to
take the residue of ζX(s) at s = d and study its asymptotic behaviour. In this direction we can
indeed obtain a result. Let us proceed more formally.

Let X be a complete non-singular absolutely irreducible projective variety of dimension d
defined over a finite field Fq with q elements, where q is a power of p. Denote by |X| the set

36



of closed points of X. We put Xn = X ⊗Fq Fqn and X̄ = X ⊗Fq Fq. Let Φqm be the number of
places of X having degree m, that is Φqm = |{p ∈ |X| | deg(p) = m}|. Thus the number Nn of
Fqn-points of the variety Xn is equal to

Nn =
∑
m|n

mΦqm .

Let bs(X) = dimQl H
s(X̄,Ql) be the l-adic Betti numbers of X. We set b(X) =

maxi=1...2d bi(X). Recall that the zeta function of X is defined for Re(s) > d by the fol-
lowing Euler product :

ζX(s) =
∏

p∈|X|

1
1−N(p)−s

=
∞∏
m=1

(
1

1− q−sm

)Φqm

,

where N(p) = q−deg p. It is known that ζX(s) has an analytic continutation to a meromorphic
function on the complex plane with a pole of order one at s = d. Furthermore, if we set
Z(X, q−s) = ζX(s) then the function Z(X, t) is a rational function of t = q−s.

Consider a family {Xj} of complete non-singular absolutely irreducible d–dimensional pro-
jective varieties over Fq. We assume that the families under consideration satisfy b(Xj) → ∞
when j →∞. Recall (see [51]) that such a family is called asymptotically exact if the following
limits exist :

φqm({Xj}) = lim
j→∞

Φqm(Xj)
b(Xj)

, m = 1, 2, . . .

The invariants φqm of a family {Xj} are called the Tsfasman–Vlăduţ invariants of this family.
One knows that any family of varieties contains an asymptotically exact subfamily.

Definition 3.3.1. We define the Brauer–Siegel ratio for an asymptotically exact family as

BS({Xj}) = lim
j→∞

log |κ(Xj)|
b(Xj)

,

where κ(Xj) is the residue of Z(Xj , t) at t = q−d.

In §3.4 we prove the following generalization of the classical Brauer–Siegel theorem :

Theorem 3.3.1. For an asymptotically exact family {Xj} the limit BS({Xj}) exists and the
following formula holds :

BS({Xj}) =
∞∑
m=1

φqm log
qmd

qmd − 1
. (3.1)

However, we come across a problem when we trying to carry out the second part of the
strategy sketched above. There seems to be no easy geometric interpretaion of the invariant
κ(X) (apart from the case d = 1 where we have a formula relating κX to the number of Fq-
points on the Jacobian of X). See however [66] for a certain cohomological interpretation of
κ(X).

Let us now switch our attention to the two other approaches by Kunyavskii–Tsfasman and
by Hindry–Pacheco. Both of them have for their starting points the famous Birch–Swinnerton-
Dyer conjecture which expresses the value at s = 1 of the L-function of an abelian variety in
terms of certain arithmetic invariants related to this variety. Thus, in this case we have (at least
conjecturally) an interpretation of the special value of the L-function at s = 1. However, the
situation with the asymptotic behaviour of this value is much less clear. Let us begin with the
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approach of Kunyavskii–Tsfasman. To simplify our notation we restrict ourselves to the case of
elliptic curves and refer for the general case of abelian varieties to the original paper [49].

Let K be a global field that is either a number field or K = Fq(X) where X is a smooth,
projective, geometrically irreducible curve over a finite field Fq. Let E/K be an elliptic curve over
K. Let X := |X(E)| be the order of the Shafarevich–Tate group of E, and ∆ the determinant
of the Mordell–Weil lattice of E (see [82] for definitions). Note that in a certain sense X and ∆
are the analogues of the class number and of the regulator respectively. The goal of Kunyavskii
and Tsfasman in [49] is to study the asymptotic behaviour of the product X · ∆ as g → ∞.
They are able to treat the so-called constant case :

Theorem 3.3.2 (Kunyavskii–Tsfasman). Let E = E0×FqK where E0 a fixed elliptic curve over
Fq. Let K vary in an asymptotically exact family {Ki} = {Fq(Xi)}, and let φqm = φqm({Xi})
be the corresponding Tsfasman–Vlăduţ invariants. Then

lim
i→∞

logq(Xi ·∆i)
gi

= 1−
∞∑
m=1

φqm logq
Nm(E0)
qm

,

where Nm(E0) = |E0(Fqm)|.

Note that there is no need to assume the above mentioned Birch and Swinnerton–Dyer
conjecture as it was proven by Milne [65] in the constant case. The proof of the above theorem
uses this result of Milne to get an explicit formula for X · ∆ thus reducing the proof of the
theorem to the study of asymptotic properties of curves over finite fields the latter ones being
much better known.

Kunyavskii and Tsfasman also make a conjecture in a certain non constant case. To formulate
it we have to introduce some more notation. Let E be again an arbitrary elliptic K-curve.
Denote by E the corresponding elliptic surface (this means that there is a proper connected
smooth morphism f : E → X with the generic fibre E). Assume that f fits into an infinite
Galois tower, i.e. into a commutative diagram of the following form :

E = E0 ←−−−− E1 ←−−−− . . . ←−−−− Ej ←−−−− . . .yf y y
X = X0 ←−−−− X1 ←−−−− . . . ←−−−− Xj ←−−−− . . . ,

(3.2)

where each lower horizontal arrow is a Galois covering. For every v ∈ X closed point in X, let
Ev = f−1(v). Let Φv,i denote the number of points of Xi lying above v, φv = limi→∞Φv,i/gi (we
suppose the limits exist). Furthermore, denote by fv,i the residue degree of a point of Xi lying
above v (the tower being Galois, this does not depend on the point), and let fv = limi→∞ fv,i.
If fv =∞, we have φv = 0. If fv is finite, denote by N(Ev, fv) the number of Fqfv -points of Ev.
Finally, let τ denote the “fudge” factor in the Birch and Swinnerton-Dyer conjecture (see [82]
for its precise definition). Under this setting Kunyavskii and Tsfasman formulate the following
conjecture in [49] :

Conjecture 3.3.3 (Kunyavskii–Tsfasman). Assuming the Birch and Swinnerton-Dyer conjec-
ture for elliptic curves over function fields, we have

lim
i→∞

logq(Xi ·∆i · τi)
gi

= 1−
∑
v∈X

φv logq
N(Ev, fv)

qfv
.

Let us finally turn our attention to the approach of Hindry and Pacheco. They treat the case
in some sense “orthogonal” to that of Kunyavskii and Tsfasman. Here, contrary to the previous
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setting of this section, we consider the number field case as the more complete one. We refer
to [32] for the function field case. As in the approach of Kunyavskii and Tsfasman we study
elliptic curves over global fields. However, here the ground field K is fixed and we let vary the
elliptic curve E. Denote by h(E) the logarithmic height of an elliptic curve E (see [31] for the
precise definition, asymptotically its properties are close to those of the conductor). Hindry in
[31] formulates the following conjecture :

Conjecture 3.3.4 (Hindry–Pacheco). Let Ei run through a family of pairwise non-isomorphic
elliptic curves over a fixed number field K. Then

lim
i→∞

log(Xi ·∆i)
h(Ei)

= 1.

To motivate this conjecture, Hidry reduces it to a conjecture on the asymptotics of the special
value of L-functions of elliptic curves at s = 1 using the conjecture of Birch and Swinnerton-
Dyer as well as that of Szpiro and Frey (the latter one is equivalent to the ABC conjecture
when K = Q).

Let us finally state some open questions that arise naturally from the above discussion.
– What is the number field analogue of theorem 3.3.1 ?
It seems not so difficult to prove the result corresponding to theorem 3.3.1 in the number field

case assuming GRH. Without GRH the situation looks much more challenging. In particular,
one has to be able to controll the so called Siegel zeroes of zeta functions of varieties (that is real
zeroes close to s = d) which might turn out to be a difficult problem. The conjecture 3.3.3 can
be easily written in the number field case. However, in this situation we have even less evidence
for it since theorem 3.3.2 is a particular feature of the function field case.

– How can one unify the conjectures of Kunyavskii–Tsfasman and Hindry—Pacheco ?
In particular it is unclear which invariant of elliptic curves should play the role of genus

from the case of global fields. It would also be nice to be able to formulate some conjectures for
a more general type of L-functions, such as automorphic L-functions.

– Is it possible to justify any of the above conjectures in certain particular cases ? Can one
prove some cases of these conjectures “on average” (in some appropriate sense) ?

For now the only case at hand is the one given by theorem 3.3.2.

3.4 The proof of the Brauer–Siegel theorem for varieties over
finite fields : case s = d

Recall that the trace formula of Lefschetz–Grothendieck gives the following expression for
Nn — the number of Fqn points on a variety X :

Nn =
2d∑
s=0

(−1)sqns/2
bs∑
i=1

αns,i, (3.3)

where {qs/2αs,i} is the set of of inverse eigenvalues of the Frobenius endomorphism acting
on Hs(X̄,Ql). By Poincaré duality one has b2d−s = bs and αs,i = α2d−s,i. The conjecture of
Riemann–Weil proven by Deligne states that the absolute values of αs,i are equal to 1. One also
knows that b0 = 1 and α0,1 = 1.

One can easily see that for Z(X, q−s) = ζX(s) we have the following power series expansion :

logZ(X, t) =
∞∑
n=1

Nn
tn

n
. (3.4)

39



Combining (3.4) and (3.3) we obtain

Z(X, t) =
2d∏
s=0

(−1)s−1Ps(X, t), (3.5)

where Ps(X, t) =
∏bi
i=1(1−qs/2αs,i). Furthermore we note that P0(X, t) = 1− t and P2d(X, t) =

1− qdt.
To prove theorem 3.3.1 we will need the following lemma.

Lemma 3.4.1. For c→∞ we have

log |κ(Xj)|
b(Xj)

=
c∑
l=1

Nl(Xj)− qdl

l
q−dl +Rc(Xj),

with Rc(Xj)→ 0 uniformly in j.

Proof of the Lemma. Using (3.5) one has

log |κ(Xj)|
b(Xj)

+ d
log q
b(Xj)

=
1

b(Xj)

2d−1∑
s=0

(−1)s+1 log |Ps(Xj , q
−d)| =

=
1

b(Xj)

2d−1∑
s=0

(−1)s+1

bs(Xj)∑
k=1

log(1− q(s−2d)/2αs,i) =

= − 1
b(Xj)

2d−1∑
s=0

(−1)s+1

bs(Xj)∑
k=1

∞∑
l=1

q(s−2d)l/2αls,i
l

=

=
1

b(Xj)

c∑
l=1

q−dl

l

 2d∑
s=0

(−1)sqsl/2
bs(Xj)∑
k=1

αls,i − qdl
+

+
1

b(Xj)

2d−1∑
s=0

(−1)s
bs(Xj)∑
k=1

∞∑
l=c+1

q(s−2d)l/2αls,i
l

=

=
c∑
l=1

Nl(Xj)− qdl

l
q−dl +Rc(Xj).

An obvious estimate gives

|Rc(Xj)| ≤
∑2d

s=0 bs(Xj)
b(Xj)

∞∑
l=c+1

q−l/2

l
→ 0

for c→∞ uniformly in j.

Now let us note that
1

b(Xj)

c∑
l=1

1
l
≤ 2
b(Xj)

log c→ 0
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when log c/b(Xj) → 0. Thus to prove the main theorem we are left to deal with the following
sum :

1
b(Xj)

c∑
l=1

q−ld

l
Nl(Xj) =

=
1

b(Xj)

c∑
l=1

q−dl

l

∑
m|l

mΦqm =
1

b(Xj)

c∑
m=1

Φqm

bc/mc∑
k=1

q−mkd

k
=

=
1

b(Xj)

c∑
m=1

Φqm log
qmd

qmd − 1
− 1
b(Xj)

c∑
m=1

Φqm

∞∑
bc/mc+1

q−mkd

k
.

Let us estimate the last term :

1
b(Xj)

c∑
m=1

Φqm

∞∑
k=bc/mc+1

q−mkd

k
≤

≤ 1
b(Xj)

c∑
m=1

Nm(Xj)q−md(bc/mc+1)

m(bc/mc+ 1)(1− q−md)
≤ 1
b(Xj)

c∑
m=1

Nm(Xj)q−cd

c(1− q−md)
≤

≤ 1
b(Xj)

c∑
m=1

(
qmd + 1 +

2d−1∑
s=1

bsq
ms/2

)
q−dc

c(1− q−md)
≤

≤ 1
b(Xj)

(
qcd + 1 +

2d−1∑
s=1

bsq
cs/2

)
q−dc

(1− q−1)
→ 0

as both b(Xj)→∞ and c→∞.
Now, to finish the proof we will need an analogue of the basic inequality from [85]. In the

higher dimensional case there are several versions of it. However, here the simplest one will
suffice. Let us define for i = 0 . . . 2d the following invariants :

βi({Xj}) = lim sup
j

bi(Xj)
b(Xj)

.

Theorem 3.4.2. For an asymptotically exact family {Xj} we have the inequality :
∞∑
m=1

mφqm

q(2d−1)m/2 − 1
≤ (q(2d−1)/2 − 1)

( ∑
i≡1 mod 2

βi

q(i−1)/2 + 1
+

∑
i≡0 mod 2

βi

q(i−1)/2 − 1

)
.

Proof. See [51], Remark 8.8.

Applying this theorem together with the fact that

log
qmd

qmd − 1
= O

(
1

qdm − 1

)
= O

(
m

q(2d−1)m/2 − 1

)
when m → ∞, we conclude that the series on the right hand side of (3.1) converges. Thus the
difference
∞∑
m=1

φqm log
qmd

qmd − 1
− 1
b(Xj)

c∑
m=1

Φqm log
qmd

qmd − 1
=

=
c∑

m=1

(
φqm −

Φqm

b(Xj)

)
log

qmd

qmd − 1
−

∞∑
m=c+1

φqm log
qmd

qmd − 1
→ 0

when c→∞, j →∞ and j is large enough compared to c. This concludes the proof of theorem
3.3.1.
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Chapitre 4

Uniform distribution of zeroes of
L-functions of modular forms

4.1 Introduction

It is well known that zeroes of L-functions contain an important information about the
arithmetic properties of the objects to which these L-functions are associated. The question
about the distribution of these zeroes on the critical line was studied by many authors. This
problem can be looked upon from many angles (the proportion of zeroes on the critical line,
low zeroes, zero spacing, etc.).

In this chapter we study the distribution of zeroes of L-functions on the critical line when
we let vary the modular form to which the L-function is associated. The same question was
considered by S. Lang in [53] and M. Tsfasman and S. Vlăduţ in [87] for the Dedekind zeta
function of number fields.

Let f(z) be a holomorphic cusp of weight k = kf for the group Γ0(N) such that f(z) =
∞∑
n=1

ann
(k−1)/2e2πinz is its normalized Fourier expansion at the cusp ∞. We suppose that f(z)

is a primitive form in the sense of Atkin–Lehner, so Lf (s) can be defined by the Euler product

Lf (s) =
∏
p|N

(1− app−s)−1
∏
p -N

(1− app−s + p−2s)−1.

We denote by αp and ᾱp the two conjugate roots of the polynomial 1 − app−s + p−2s. Deligne
has shown (see [10]) that |αp| = |ᾱp| = 1 for p - N (the Ramanujan–Peterson conjecture). On
the other hand, one knows (see [1]) that for p | N we have |ap| ≤ 1.

If we define the gamma factor by

γf (s) = π−sΓ
(
s+ (k − 1)/2

2

)
Γ
(
s+ (k + 1)/2

2

)
= ck(2π)−sΓ

(
s+

k − 1
2

)
with ck = 2(3−k)/2√π, then the function Λ(s) = N s/2γf (s)Lf (s) is entire and satisfies the
functional equation Λ(s) = wΛ(1 − s) with w = ±1. The Generalized Riemann Hypothesis
(GRH) for L-function of modular forms states that all the non-trivial zeroes of these L-functions
lie on the critical line Re s = 1

2 . Throughout the chapter we assume that GRH is true.
The analytic conductor qf (see [42]) is defined as

qf = N

(
k − 1

2
+ 3
)(

k + 1
2

+ 3
)
∼ Nk2

4
,
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when k →∞. We will use the last expression (or, more precisely, its logarithm minus a constant)
as a weight in all the zero sums in this chapter.

To each f(z) we can associate the measure

∆f :=
2π

log qf

∑
Lf (ρ)=0

δt(ρ),

where t(ρ) = 1
i

(
ρ− 1

2

)
and ρ runs through all non-trivial zeroes of Lf (s) ; here δa denotes the

atomic (Dirac) measure at a. Since we suppose that GRH is true, ∆f is a discrete measure on
R. Moreover, it can easily be seen that ∆f is a measure of slow growth (see below).

Our main result is the following one :

Theorem 4.1.1. Assuming GRH, for any family {fj(z)} of primitive forms with qfj →∞ the
limit

∆ = lim
j→∞

∆j = lim
j→∞

∆fj

exists in the space of measures of slow growth on R and is equal to the measure with density 1.

4.2 Proof of theorem 4.1.1

Our method of the proof will, roughly speaking, follow that of [87], where a similar question
is treated in the case of Dedekind zeta functions. It will even be simplier in our case due to the
fact that the family we consider is ”asymptotically bad”.

Let us recall a few facts and definitions from the theory of distribution. We will use [72]
as our main reference. Recall that the Schwartz space S = S(R) is the space of all real valued
infinitely differentiable rapidly decreasing functions on R (i. e. φ(x) and any its derivative go to
0 when |x| → ∞ faster then any power of |x|). The space D(R) is defined to be the space of all
real valued infinitely differentiable functions with compact support on R. Both S(R) and D(R)
are equipped with the structures of topological vector spaces.

The space D′ (resp. S ′), topologically dual to D (resp. S) is called the space of distribution
(resp. tempered distributions). We also define the space of measuresM as the topological dual
of the space of real valued continuous functions with compact support on R. The space M
contains a cone of positive measures M+, i. e. of measures taking positive values on positive
functions. One has the following inclusions : S ′ ⊂ D′ and M+ ⊂ M ⊂ D′. The intersection
Msl =M∩S ′ is called the space of measures of slow growth. A measure µ of slow growth can
be characterized by the property that for some positive integer k the integral∫ +∞

−∞
(x2 + 1)−kdµ

converges (see [72, Thm. VII of Ch. VII]). In particular, from this criterion and the fact that
the series

∑
ρ6=0,1

|ρ|−2 converges ([42, Lemma 5.5]), we see that ∆f is a measure of slow growth

for any f.
Finally, we note that the Fourier transform ˆ is defined on S and S ′ and is a topological

automorphism on these spaces. D is known to be dense in S and so D̂ is also dense in S = Ŝ.
To check that µ is a measure of slow growth it is enough to check that it is defined on a dense
subset and that it is continuous on this dense subset in the topology of S. In the same way, to
check that a sequence of measures of slow growth converges to a measure of slow growth it is
enough to check its convergence on a dense subset to a measure continuous on this dense subset.
This follows from the definition of measures as linear functionals.
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Our main tool will be a version of Weil explicit formula for L-functions of modular forms
proven in [63] or in [42, Chap. V] (in the last source some extra conditions on test functions are
imposed).

Suppose F ∈ S(R) satisfies for some ε > 0 the following condition

|F (x)|, |F ′(x)| � ce(− 1
2

+ε)|x| as |x| → ∞. (4.1)

Let
Φ(s) :=

∫ ∞
0

F (x)e(s− 1
2

)xdx = F̂ (t),

where s = 1
2 + it. The next proposition gives us the explicit formula that we need to relate the

sum over zeroes to the sum of coefficient of modular forms :

Proposition 4.2.1. Let f(z) be a primitive form of level N and weight k. Then the limit∑
Lf (ρ)=0

Φ(ρ) = lim
T→∞

∑
Lf (ρ)=0
|ρ|<T

Φ(ρ)

exists and we have the following formula :

∑
Lf (ρ)=0

Φ(ρ) = −
∑
p,m

b(pm)(F (m log p) + F (−m log p))
log p
pm/2

+

+ F (0)(logN − 2 log(2π)) +
1
π

∫ +∞

−∞

Φ
(

1
2 + it

)
+ Φ

(
1
2 − it

)
2

· ψ
(
k

2
+ it

)
dt,

where ψ(s) = Γ′(s)/Γ(s), b(pm) = (ap)m if p | N and b(pm) = (αp)m + (ᾱp)m otherwise.

Taking a subsequence of {fj} we can assume that the limit α = lim
j→∞

logNj
logNj+log kj

exists. We

will check the convergence of measures on D̂. From the above discussion this is enough to prove
the result. Let us take any φ ∈ D̂, φ = F̂ , F ∈ D. We have φ(t) = Φ

(
1
2 + it

)
. The function F

satisfies the condition (4.1), so we can apply the explicit formula to it. We fix φ(t) and let vary
fj Then, we get the equality when j →∞.

∆(φ) = 2πF (0)α+ 2
∫ +∞

−∞

φ(t) + φ(−t)
2

· lim
j→∞

ψ
(
kj
2 + it

)
logNj + log kj

dt, (4.2)

since |b(pm)| ≤ 2 and the integral is uniformly convergent as φ(t) ∈ S. The limit under the
integral sign can be evaluated using the Stirling formula ψ(s) = log s + O

(
1
|s|

)
(see [54, p.

332]). This gives us

lim
j→∞

ψ
(
kj
2 + it

)
logNj + log kj

=
1
2

(1− α).

But
∫ +∞
−∞ ψ(t)dt = 2πF (0) and so the right hand side of (4.2) equals

2πF (0)α+ 2πF (0)(1− α) = 2πF (0) =
∫ +∞

−∞
φ(t)dt.

This concludes the proof of the theorem.

45



Corollary 4.2.2. Any fixed interval around s = 1
2 contains zeroes of Lf (s) if qf is sufficiently

large.

Remark 4.2.1. One can prove a similar equidistribution statement for L-functions of bounded
degree in the Selberg class, assuming suitable conjectures (like the Generalized Riemann Hypo-
thesis or the Ramanujan Conjecture). It is an interesting question how zeroes of L-functions are
distributed if the degree of these L-functions grows with the analytic conductor. Some examples
of non-trivial distributions of zeroes for Dedekind zeta functions are considered in [87].
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Chapitre 5

Asymptotic properties of zeta
functions over finite fields

5.1 Introduction

The study of asymptotic properties of zeta functions of curves over finite fields was initiated
by Tsfasman and Vlăduţ who had the so called Drinfeld – Vlăduţ inequality for the asymptotic
number of points on curves over finite fields as initial motivation ([16], [85]). This work went far
beyond this initial inequality and led to the introduction of the concept of limit zeta function
which turned out to be very useful [86]. It also had quite numerous applications to coding theory
(see, for example, the book [88] for some of them).

The above study of limit zeta functions involves three main topics :

1. The basic inequality, which can be regarded as a rather far reaching generalization of the
Drinfeld – Vlăduţ inequality ;

2. Brauer–Siegel type results, in which the asymptotic properties of special values of zeta
functions (such as the order of the Picard group) are studied ;

3. The distribution of zeroes of zeta functions in families.

There are at least two main directions in the further study of these topics. First, one may
ask what are the number field counterparts of these results (for number fields and function
fields are regarded by many as facets of a single gemstone). The translation of these results
to the number field case is the subject of the paper [87]. The techniques turns out to be very
analytically involved but the reward is no doubts significant as the authors managed to resolve
some of the long standing problems (such as the generalization of the Brauer–Siegel theorem
to an asymptotically good case) as well as to improve several difficult results (Odlyzko–Serre
inequalities for the discriminant, Zimmert’s bound for regulators).

Second, one may ask what happens with higher dimensional varieties over finite fields. Here
the answers are less complete. The first topic (main inequalities) was extensively studied in [51].
The results obtained there are fairly complete, though they do not directly apply to L-functions
(such as L-functions of elliptic curves over function fields). The second topic is considerably less
developed though it received a particular attention in the recent years in the case of elliptic
surfaces [32], [49] and in the case of zeta functions of varieties over finite fields [92]. The results
concerning the third topic seem to be even scarcer. One can cite a paper by Michel [64] where
the case of elliptic surfaces over Fq(t) is treated. Quite a considerable attention was devoted to
some finer questions related to the distribution of zeroes [46]. However, to our knowledge, not a
single result of this type for asymptotically good families of varieties has been obtained before.
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The goal of this chapter is to study the above three topic in the case of more general zeta
and L-functions. We take the axiomatic approach, defining a class of L-functions to which our
results may be applicable. This can be regarded as the function field analogue of working with
the Selberg class in characteristic zero, though obviously the analytic contents in the function
case is much less substantial (and often times even negligible). In our investigations we devote
more attention to the second and the third topics as being far less developed then the first one.
So, while giving results on the generalizations of the basic inequality, we do not seek to prove
them in utmost generality (like in the paper [51]). We hope that this allows us to gain in clarity
of the presentation as well as to save a considerable amount of space.

We use families of elliptic curves over function fields as our motivating example. After each
general statement concerning any of the three topics we specify what concrete results we get
for curves and varieties over finite fields and elliptic curves over function fields. In the study
of the second topic we actually manage prove something new even in the classical case of zeta
functions of curves, namely we prove a statement on the limit behaviour of zeta functions of
which the Brauer–Siegel theorem from [86] is a particular case (see theorem 5.5.2 and corollary
5.5.4). We also reprove and extend some of the Ihara’s results on Euler–Kronecker constant of
function fields [41] incorporating them in the same general framework of limit zeta functions (see
corollary 5.5.5). Our statements about the distribution of zeroes (theorem 5.6.1 and corollary
5.6.4) imply in the case of elliptic curves over function fields a generalization of a result due to
Michel [64] (however, unlike us, Michel also provides an estimate for the error term).

Here is the plan of the chapter. In section 5.2 we present the axiomatic framework for
zeta and L-functions with which we will be working, then we prove an explicit formula for
them. In the end of the section we introduce several particular examples coming from algebraic
geometry (zeta functions of curves, zeta functions of varieties over finite fields, L-functions of
elliptic curves over function fields) to which we will apply the general results. Each further
section contains a subsection where we show what the results on abstract zeta and L-functions
give in these concrete cases. In section 5.3 we outline the asymptotic approach to the study of
zeta and L-functions, introducing the notions of asymptotically exact and asymptotically very
exact families. Section 5.4 is devoted to the proof of several versions of the basic inequality.
The study of the Brauer–Siegel type results is undertaken in section 5.5. In the same section
we show how these results imply a formula for the asymptotic behaviour of the invariants of
function fields generalizing the Euler–Kronecker constant (corollary 5.5.5) and a certain bound
towards the conjectures of Kunyavskii, Tsfasman and Hindry (theorem 5.5.11). We prove the
zero distribution results in section 5.6. There we also give some applications to the distribution
of zeroes and the growth of ranks in families of elliptic surfaces (corollary 5.6.4 and corollary
5.6.6). Finally, in section 5.7 we discuss some possible further development as well as open
questions.

5.2 Zeta and L-functions

5.2.1 Definitions

Let us define the class L-functions we will be working with. Let Fq be a finite field with q
elements.

Definition 5.2.1. An L-function L(s) over a finite field Fq is a holomorphic function in s such
that for u = q−s the function L(u) = L(s) is a polynomial with real coefficients, L(0) = 1 and
all the roots of L(u) are on the circle of radius q−

d
2 for some non-negative integer number d.

We will refer to the last condition in the definition as the Riemann hypothesis for L(s) since
it is the finite field analogue of the classical Riemann hypothesis for the Riemann zeta function.
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The number d in the definition of an L-function will be called its weight. We will also say that
the degree g of the polynomial L(u) is the degree of the L-function L(s) (it should not be
confused with the degree of an L-function in the analytic number theory, where it is taken to
be the degree of the polynomial in its Euler product).

The logarithm of an L-function has a Dirichlet series expansion

logL(s) =
∞∑
f=1

Λf
f
q−fs,

which converges for Re s > d
2 . For the opposite of the logarithmic derivative we get the formula :

−L
′(s)
L(s)

=
∞∑
f=1

(Λf log q) q−fs = u
L′(u)
L(u)

log q.

There is a functional equation for L(s) of the form

L(d− s) = ωq( d
2
−s)gL(s), (5.1)

where g = degL(u) and ω = ±1 is the root number. This can be proven directly as follows. Let

L(u) =
g∏
i=1

(
1− u

ρi

)
. Then

L
(

1
uqd

)
=
∏
ρ

(
1− 1

ρuqd

)
=
∏
ρ

ρ · qdgug
∏
ρ

(
u

ρ̄
− 1
)

= ±q
dg
2 ug

∏
ρ

(
1− u

ρ

)
.

Here we used the fact that all coefficients of L(u) are real, so its complex roots come in pairs ρ
and ρ̄.

Definition 5.2.2. A zeta function ζ(s) over a finite field Fq is a product of L-functions in
powers ±1 :

ζ(s) =
d∏

k=0

Lk(s)wk ,

where wk ∈ {−1, 1}, Lk(s) is an L-function of weight k.

For the logarithm of a zeta function we also have the Dirichlet series expansion :

log ζ(s) =
∞∑
f=1

Λf
f
q−fs

which is convergent for Re s > d
2 .

5.2.2 Explicit formulae

In this subsection we will derive the analogues of Weil and Stark explicit formulae for our
zeta and L-functions. The proofs of the Weil explicit formula can be found in [74] for curves
and in [51] for varieties over finite fields. An explicit formula for L-functions of elliptic surfaces
is proven in [7]. In our proof we will follow the latter exposition.

Recall that our main object of study is ζ(s) =
d∏
i=0

Li(s)wi a zeta function with Li(s) given

by

Li(s) =
gi∏
j=1

(
1− q−s

ρij

)
.
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As before, we define Λf via the relation log ζ(s) =
∞∑
f=1

Λf
f q
−fs.

Proposition 5.2.1. Let v = (vf )f≥1 be a sequence of real numbers and let ψv(t) =
∞∑
f=1

vf t
f .

Let ρv be the radius of convergence of the series for ψv(t). Assume that |t| < q−d/2ρv, then

∞∑
f=1

Λfvf tf = −
d∑
i=0

wi

gi∑
j=1

ψv(qiρijt).

Proof. Let us prove this formula for L-functions. The formula for zeta functions will follow by
additivity.

The simplest is to work with L(u) =
g∏
j=1

(
1− u

ρ

)
. The coefficient of uf in −uL′(u)/L(u) is

seen to be
∑
ρ
ρ−f for f ≥ 1. From this we derive the equality :

∑
ρ

ρ−f = −Λf .

The map ρ 7→ (qdρ)−1 permutes the zeroes {ρ}, thus for any f ≥ 1 we have :

Sn =
∑
ρ

(qdρ)f = −Λf .

Multiplying the last identity by vf tf and summing for f = 1, 2, . . . we get the statement of the
theorem.

From this theorem one can easily get a more familiar version of the explicit formula (like
the one from [74] in the case of curves over finite fields).

Corollary 5.2.2. Let L(s) be an L-function, with zeroes ρ = q−d/2eiθ, θ ∈ [−π, π]. Let f :
[−π, π]→ C be an even trigonometric polynomial

f(θ) = v0 + 2
Y∑
n=1

vn cos(nθ).

Then we have the explicit formula :

∑
θ

f(θ) = v0g − 2
Y∑
f=1

vfΛfq−
df
2 .

Proof. We put t = q−
d
2 in the above explicit formula and notice that the sum over zeroes can

be written using cos since all the non-real zeroes come in complex conjugate pairs.

In the next sections we will also make use of the so called Stark formula (which borrows its
name from its number field counterpart from [80]).

Proposition 5.2.3. For a zeta function ζ(s) we have :

1
log q

ζ ′(s)
ζ(s)

=
d∑
i=0

wi

gi∑
j=1

1
qsρij − 1

= −1
2

d∑
i=0

wigi +
1

log q

d∑
i=0

wi
∑

Li(θij)=0

1
s− θij

.
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Proof. The first equality is a trivial consequence of the formulae expressing Li(u) as polynomials
in u.

The second equality follows from the following series expansion :

log q
ρ−1qs − 1

+
log q

2
= lim

T→∞

∑
qθ=ρ
|θ|≤T

1
s− θ

.

5.2.3 Examples

We have in mind three main types of examples : zeta functions of curves over finite fields,
zeta functions of varieties over finite fields and L-functions of elliptic curves over function fields.

Example 5.2.1 (Curves over finite fields). Let X be an absolutely irreducible smooth projective
curve of genus g over the finite field Fq with q elements. Let Φf be the number of points of
degree f on X. The zeta function of X is defined for Re s > 1 as

ζX(s) =
∞∏
f=1

(1− q−fs)−Φf .

It is known that ζX(s) is a rational function in u = q−s. Moreover,

ζK(s) =

g∏
j=1

(
1− u

ρj

)(
1− u

ρ̄j

)
(1− u)(1− qu)

,

and |ρj | = q−
1
2 . It can easily be seen that in this case Λf = Nf (X) is the number of points on

X ⊗Fq Fqn over Fqn . A very important feature of this example which will be lacking in general
is that Λf ≥ 0 for all f.

Though ζX(s) is not an L-function, in all asymptotic considerations the denominator will
be irrelevant and it will behave as an L-function.

This example will serve as a motivation in most of our subsequent considerations, for most
(but not all, see section 5.5) of the results we derive for general zeta and L-functions are known
in this setting.

Example 5.2.2 (Varieties over finite fields). Let X be a non-singular absolutely irreducible pro-
jective variety of dimension n defined over a finite field Fq. Denote by |X| the set of closed
points of X. We put Xf = X ⊗Fq Fqf and X̄ = X ⊗Fq Fq. Let Φf be the number of points of
X having degree f , that is Φf = |{v ∈ |X| | deg(v) = f}|. The number Nf of Fqf -points of the
variety Xf is equal to Nf =

∑
m|f

mΦm.

Let bs(X) = dimQl H
s(X̄,Ql) be the l-adic Betti numbers of X. The zeta function of X is

defined for Re(s) > d by the following Euler product :

ζX(s) =
∏
v∈|X|

1
1−Nv−s

=
∞∏
f=1

(1− q−fs)−Φf ,

where Nv = q− deg v. If we set ZX(u) = ζX(s) with u = q−s then the function ZX(u) is a rational
function of u and can be expressed as

ZX(u) =
2n∏
i=0

(−1)i−1 logPi(X,u),
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where

Pi(X,u) =
bi∏
j=1

(
1− u

ρij

)
,

and |ρij | = q−i/2. Moreover, P0(X,u) = 1−u and P2n(X,u) = 1− qdu. As before, we have that
Λf = Nf (X) ≥ 0.

The previous example is obviously included in this one. However, it is better to separate
them as in the case of zeta functions of general varieties over finite fields much less is known. One
more reason to distinguish between these two examples is that, whereas zeta functions of curves
asymptotically behave as L-functions, zeta functions of varieties are ”real” zeta functions. Thus
there is quite a number of properties that simply do not hold in general (for example, those
connected to the distribution of zeroes).

Example 5.2.3 (Elliptic curves over function fields). Let E be a non-constant elliptic curve over
a function field K = Fq(X) with finite constant field Fq. The curve E can also be regarded as
an elliptic surface over Fq. Let g be the genus of X. Places of K (that is points of X) will be
denoted by v. Let dv = deg v, |v| = Nv = qdeg v and let Fv = FNv be the residue field of v.

For each place v of K we define av from |Ev(Fv)| = |v|+1−av, where |Ev(Fv)| is the number
of points on the reduction Ev of the curve E. The local factors Lv(s) are defined by

Lv(s) =

{
(1− av|v|−s + |v|1−2s)−1, if Ev is non-singular ;
(1− av|v|−s)−1, otherwise.

We define the global L-function LE(s) =
∏
v
Lv(s). The product converges for Re s > 3

2 and

defines an analytic function in this half-plane. Define the conductor NE of E as the divisor
∑
v
nvv

with nv = 1 at places of multiplicative reduction, nv = 2 at places of additive reduction for
p > 3 (and possibly larger for p = 2 or 3) and nv = 0 otherwise. Let nE = degNE =

∑
v
nv deg v.

It is known (see [7]) that LE(s) is a polynomial LE(u) in u = q−s of degree nE + 4g − 4.
The polynomial LE(u) has real coefficients, satisfies LE(0) = 1 and all of its roots have absolute
value q−1.

Let αv, ᾱv be the roots of the polynomial 1− avt+ |v|t2 for a place v of good reduction and
let αv = av and ᾱv = 0 for a place v of bad reduction. Then from the definition of LE(s) one
can easily deduce that

Λf =
∑

mdv=f

dv(αmv + ᾱmv ), (5.2)

the sum being taken over all places v of K and m ≥ 1 such that mdeg v = f.
This example will be the principal one in the sense that all our results on L-functions are

established in the view to apply them to this particular case. These L-functions are particu-
larly interesting from the arithmetic point of view, especially due to the connection between
the special value at s = 1 and the arithmetic invariants of the elliptic curve (the order of
the Shafarevich–Tate group and the regulator) provided by the Birch and Swinnerton-Dyer
conjecture.

5.3 Families of zeta and L-functions

5.3.1 Definitions and basic properties

We are interested in studying sequences of zeta and L-functions. Let us fix the finite field
Fq.
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Definition 5.3.1. We will call a sequence {Lk(s)}k=1...∞ of L-functions a family if they all
have the same weight d and the degree gk tends to infinity.

Definition 5.3.2. We will call a sequence {ζk(s)}k=1...∞ =
{

d∏
i=0

Lki(s)wi
}
k=1...∞

of zeta func-

tions a family if the total degree gk =
d∑
i=0

gki tends to infinity. Here gki are the degrees of the

individual L-functions Lki(s) in ζk(s).

Remark 5.3.1. In the definition of a family of zeta functions we assume that d = dk and wi = wki
are the same for all k. Obviously, any family of L-functions is at the same time a family of zeta
functions.

Definition 5.3.3. A family {ζk(s)}k=1...∞ of zeta or L-functions is called asymptotically exact
if the limits

γi = γi({ζk(s)}) = lim
k→∞

gki
gk

and λf = λf ({ζk(s)}) = lim
k→∞

Λkf
gk

exist for each i = 0, . . . , d and each f ∈ Z, f ≥ 1. It is called asymptotically bad if λf = 0 for
any f and asymptotically good otherwise.

The following (easy) proposition will be important.

Proposition 5.3.1. Let L(s) be an L-function. Then

1. for each f we have the bound |Λf | ≤ q
df
2 g;

2. there exists a number C(q, d, s) depending on q, d and s but not on g such that | logL(s)| ≤
C(q, d, s)g for any s with Re s 6= d

2 . The bound is uniform in each vertical strip a ≤ Re s ≤
b, d2 /∈ [a, b].

Proof. To prove the first part we use proposition 5.2.1. Applying it to the sequence consisting
of one non-zero term we get :

Λf = −
∑

Lki(ρ)=0

qdfρf . (5.3)

The absolute value of the right hand side of this equality is bounded by q
df
2 g.

To prove the second part we assume first that Re s = ε+ d
2 >

d
2 . We have the estimate :

| logL(s)| =

∣∣∣∣∣∣
∞∑
f=1

Λf
f
q−fs

∣∣∣∣∣∣ ≤
∞∑
f=1

g

f
· q

df
2 · q−f Re s ≤ g

∞∑
f=1

1
fqεf

.

For Re s < d
2 we use the functional equation (5.1).

Proposition 5.3.2. Any family of zeta and L-functions contains an asymptotically exact sub-
family.

Proof. We note that both gki
gk

and Λkf
gk

are bounded. For the first expression it is obvious and
the second expression is bounded by proposition 5.3.1. Now we can use the diagonal method to
choose a subfamily for which all the limits exist.

As in the case of curves over finite fields we have to single out the factors in zeta functions
which are asymptotically negligible. This can be done using proposition 5.3.1.

53



Definition 5.3.4. Let {ζk(s)} be an asymptotically exact family of zeta functions. Define the
set I ⊂ {0 . . . d} by the condition i ∈ I if and only if γi = 0. We define ζn,k(s) =

∏
i∈I

Lki(s)wi the

negligible part of ζk(s) and ζe,k(s) =
∏

i∈{0...d}−I
Lki(s)wi the essential part of ζk(s). Define also

de = max{i | i /∈ I}.

Remark 5.3.2. The functions ζn,k(s) and ζe,k(s) make sense only for families of zeta functions
and not for individual zetas. We also note that the definitions of the essential and the negligible
parts are obviously trivial for families of L-functions.

The following proposition, though being rather trivial, turns out to be useful.

Proposition 5.3.3. For an asymptotically exact family of zeta functions {ζi(s)} we have
λf (ζi(s)) = λf (ζe,i(s)).

Proof. This is an immediate corollary of proposition 5.3.1.

The condition on a family to be asymptotically exact suffices in the case of varieties over
finite fields due to the positivity of coefficients Λf . However, in general we will have to impose
somewhat stricter conditions on the family.

Definition 5.3.5. We say that an asymptotically exact family of zeta or L-functions is asymp-
totically very exact if the series

∞∑
f=1

|λf |q−
fde
2

is convergent.

Example 5.3.1. An obvious example of a family which is asymptotically exact but not very
exact is given by the family of L-functions Lk(s) = (1− q−s)k. We have λf = −1 for any k and

the series
∞∑
f=1

(−1) is clearly divergent.

Proposition 5.3.4. Assume that we have an asymptotically exact family of zeta functions

{ζk(s)} =
{

d∏
i=0

Lki(s)wi
}
k=1...∞

, such that all the families {Lki(s)} are also asymptotically

exact. Then, the family {ζk(s)} is asymptotically very exact if and only if the family {Lkde(s)}
is asymptotically very exact.

Proof. This follows from proposition 5.3.1 together with proposition 5.3.3.

In practice, this proposition means that the asymptotic behaviour of zeta functions at s = de
2

is essentially the same as that of their weight de part. Thus, most asymptotic questions about
zeta functions are reduced to the corresponding question about L-function.

5.3.2 Examples

As before we stick to three types of examples : curves over finite fields, varieties over finite
fields and elliptic curves over function fields.

Example 5.3.2 (Curves over finite fields). Let {Xj} be a family of curves over Fq. Recall (see
[86]) that an asymptotically exact family of curves was defined by Tsfasman and Vlăduţ as such
that the limits

φf = lim
j→∞

Φf (Xj)
gj

(5.4)
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exist. This is equivalent to our definition since Λf = Nf (X) =
∑
m|f

mΦm. Note a little difference

in the normalization of coefficients : in the case of curves we let λf ({Xj}) = lim
j→∞

Λjf
2gj

since 2gj

is the degree of the corresponding polynomial in the numerator of ζXj (s) and the authors of
[86] choose to consider simply lim

j→∞
Λjf
gj
.

For any asymptotically exact family of zeta functions of curves the negligible part of ζX(s) is
its denominator (1− q−s)(1− q1−s) and the essential part is its numerator. Thus, zeta functions
of curves asymptotically behave as L-functions. Any asymptotically exact family of curves is
asymptotically very exact as shows the basic inequality from [86] (see also corollary 5.4.2 below),
which is in fact due to positivity of λf .

Example 5.3.3 (Varieties over finite fields). In the case of varieties over finite fields we have an
analogous notion of an asymptotically exact family [51], namely we ask for the existence of the
limits

φf = lim
j→∞

Φf (Xj)
b(Xj)

and βi = lim
j→∞

bi(Xj)
b(Xj)

,

where b(Xj) =
2d∑
i=0

bi(Xj) is the sum of Betti numbers. Again this definition and our definition

5.3.3 are equivalent.
In this case the factors (1−q−s) and (1−qd−s) of the denominator are also always negligible.

However, we can have more negligible factors as the following example shows. Take the product
C×C, where C is a curve of genus g →∞. The dimension of the middle cohomology group H2

grows as g2 and b1 = b3 = g (Kunneth formula). Thus ζC×C(s) behaves like the inverse of an
L-function. If for an asymptotically exact family we have de = 2d− 1 then it is asymptotically
very exact as shows a form of the basic inequality [51, (8.8)] (it actually gives that the series
∞∑
f=1

λfq
−f(d−1/2) always converges), see also corollary 5.4.4 below.

Example 5.3.4 (Elliptic curves over function fields). In the last example we will be interested in
two particular types of asymptotically exact families.

Asymptotically bad families. Let us fix a function field K = Fq(X) and let us take the
sequence of all pairwise non-isomorphic elliptic curves Ei/K. We get a family of L-functions

since nEi →∞. From (5.2) we deduce that |Λf | ≤ 2

(∑
dv |f

dv

)
q
f
2 which is independent of nEi .

Thus, this family is asymptotically exact and asymptotically bad, i. e. λf = 0 for any f ≥ 1. This
will be the only fact important for our asymptotic considerations. There will be no difference
in the treatment of this particular family or in that of any other asymptotically bad family of
L-functions.

This family was considered in [32] in the connection with the generalized Brauer–Siegel
theorem. The main result of that paper is the reduction of the statement about the behaviour
of the order of the Tate–Shafarevich group and the regulator of elliptic curves over function
fields to a statement about the values of their L-functions at s = 1. See also [31] for a similar
problem treated in the number field case.

Base change. Let us consider a family which is, in a sense, orthogonal to the previous one.
Let K = Fq(X) be a function field and let E/K be an elliptic curve. Let f : E → X be the
corresponding elliptic surface. Consider a family of coverings of curves X = X0 ← X1 · · · ←
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Xi ← . . . and the family of elliptic surfaces Ei, given by the base change :

E = E0 ←−−−− E1 ←−−−− . . . ←−−−− Ei ←−−−− . . .yf y y
X = X0 ←−−−− X1 ←−−−− . . . ←−−−− Xi ←−−−− . . . .

Let Φv,f (Xi) be the number of points on Xi, lying above a closed point v ∈ |X|, such that
their residue fields have degree f over Fv.

Lemma 5.3.5. The limits

φv,f = φv,f ({Xi}) = lim
i→∞

Φv,f (Xi)
g(Xi)

always exist.

Proof. We will follow the proof of the similar statement for Φf from [87, lemma 2.4]. Let
K2 ⊇ K1 ⊇ K be finite extension of function fields. From the Riemann–Hurwitz formula we
deduce the inequality g(K2) − 1 ≥ [K2 : K1](g(K1) − 1), where [K2 : K1] is the degree of the
corresponding extension. Now, if we fix w a place of K1 above v and consider its decomposition

{w1, . . . , wr} in K2, then we have
r∑
i=1

degwi ≤ [K2 : K1]. Thus we get for any n ≥ 1 the

inequality
n∑
f=1

fΦv,f (K2) ≤ [K2 : K1]
n∑
f=1

fΦv,f (K1). Dividing we see that

n∑
f=1

fΦv,f (K2)

g(K2)− 1
≤

n∑
f=1

fΦv,f (K1)

g(K1)− 1
.

It follows that the sequence
n∑
f=1

fΦv,f (Xi)
g(Xi)−1 is non-increasing and bounded for any fixed n and so

has a limit. Taking n = 1 we see that φv,1 exists, taking n = 2 we derive the existence of φv,2
and so on.

Let us remark that Φf =
∑

m deg v=f

Φv,m, the sum being taken over all places v of K and the

same equality holds for φv.
For our family we can derive a concrete expression for the Dirichlet series coefficients of the

logarithms of L-functions. Indeed, (5.2) gives us

Λf =
∑

mkdv=f

mdvΦv,m(αmkv + ᾱmkv ). (5.5)

Lemma 5.3.6. Let Ei/Ki be a family of elliptic curves obtained by a base change and let ni =
nEi/Ki be the degree of the conductor of Ei/Ki. Then the ratio ni

gi
is bounded by a constant

depending only on E0/K0.
If, furthermore, char Fq 6= 2, 3 or the extensions Ki/K0 are Galois for all i then the limit

ν = lim
i→∞

ni
gi

exists.

Proof. The proof basically consists of looking at the definition of the conductor and applying
the same method as in the proof of lemma 5.3.5. Recall, that if E/K is an elliptic curve over a
local field K, Tl(E) is its Tate module, l 6= char Fq, Vl(E) = Tl(E)⊗Ql, I(K̄/K) is the inertia
subgroup of Gal(K̄/K), then the tame part of the conductor is defined as

ε(E/K) = dimQl(Vl(E)/Vl(E)I(K̄/K)).
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It is easily seen to be non increasing in extensions of K, moreover it is known that 0 ≤ ε(E/K) ≤
2 (see [78, Chap. IV, §10]).

If we let L = K(E[l]), gi(L/K) = |Gi(L/K)|, where Gi(L/K) is the i th ramification group
of L/K, then the wild part of the conductor is defined as

δ(E/K) =
∞∑
i=1

gi(L/K)
g0(L/K)

dimFl(E[l]/E[l]Gi(L/K)).

One can prove [78, Chap. IV, §10] that δ(E/K) is zero unless the characteristic of the residue
field of K is equal to 2 or 3. In any case, the definition shows that δ(E/M) can take only finitely
many values if we fix E and let vary the extension M/K.

The exponent of the conductor of E over the local field K is defined to be f(E/K) =
ε(E/K) + δ(E/K).

From the previous discussion we see that the ratio ni
gi

is bounded. If, furthermore, char Fq 6=
2, 3, then an argument similar to the one used in the proof of lemma 5.3.5 together with the
fact that nw(E) ≤ nv(E) if w lies above v in an extension of fields gives us that the sequence
ni
gi

is non-increasing and so it has a limit ν = ν({Ei/Ki}).
In the case of Galois extensions we notice that nw(E) must stabilize in a tower, so the

previous argument is applicable once again.

Now we can prove the following important proposition :

Proposition 5.3.7. Any family of elliptic curves obtained by a base change contains an asympto-
tically very exact subfamily. If, furthermore, char Fq 6= 2, 3 or the extensions Ki/K0 are Galois
for all i then it is itself asymptotically very exact.

Proof. Recall that for each Ei/Ki the degree of the corresponding L-function is ni + 4gi − 4.
It follows from the previous lemma that it is enough to prove the existence of the limits λ̃f =

lim
i→∞

Λf (Ei)
gi

and the convergence of the series
∞∑
f=1

|λ̃f |q−f .

The first statement is a direct corollary of lemma 5.3.5 and (5.5). As for the second statement,
we have the following bound :

|Λf | ≤ 2
∑

mkdv=f

mdvΦv,mq
f
2 = 2

∑
lk=f

lΦlq
f
2 = 2Nfq

f
2 .

Now, the convergence of the series
∞∑
f=1

νfq
− f

2 with νf = lim
i→∞

Nf (Xi)
gi

is a consequence of the basic

inequality from [85, corollary 1].

Remark 5.3.3. It would be nice to know whether the statement of the previous proposition holds
without any additional assumptions, i. e. whether a family obtained by a base change is always
asymptotically very exact. This depends on lemma 5.3.6, which do not know how to prove in
general.

The family of elliptic curves obtained by the base change was studied in [49] again in the
attempts to obtain a generalization of the Brauer–Siegel theorem to this case. They formulate
a conjecture on the asymptotic behaviour of the order of the Tate–Shafarevich group and the
regulator in such families (see conjecture 5.5.9 below). They also treat the case of constant
elliptic curves in more detail. Unfortunately, the proof of the main theorem [49, theorem 2.1]
given there is not absolutely flawless (the change of limits remains to be justified, which seems
to be very difficult if not inaccessible at present).
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Remark 5.3.4. If, for a moment, we turn our attention to general families of elliptic surfaces the
following natural question arises :

Question 5.3.1. Is it true that any family of elliptic surfaces contains an asymptotically very
exact subfamily ?

The fact that it is true for two “orthogonal” cases makes us believe that this property might
hold in general.

5.4 Basic inequalities

In this section we finally start carrying out our program to generalize asymptotic results
from the case of curves over finite fields to the case of general zeta and L-functions. We will
start with the case of L-functions, where a little more can be said. Next we will prove a weaker
result in the case of zeta functions.

5.4.1 Basic inequality for L-functions

Our goal here is to prove the following theorem, generalizing the basic inequality from [85].

Theorem 5.4.1. Let {Li(s)} be an asymptotically exact family of L-functions or an asympto-
tically exact family of zeta functions {ζi(s)} with ζe,i(s) being an L-function for any i. Let d be
its weight. Then for any b ∈ N the following inequality holds :

b∑
j=1

(
1− j

b+ 1

)
λjq
− dj

2 ≤ 1
2
. (5.6)

Proof. Using proposition 5.3.3 one immediately sees that it is enough to prove the statement of
the theorem for L-functions.

As in the proof for curves our main tool will be the so called Drinfeld inequality. We take
an L-function L(s) and let αi = q

d
2 ρi, where ρi are the roots of L(u), so that |αi| = 1. For any

αi we have

0 ≤ |αbi + αb−1
i + · · ·+ 1|2 = (b+ 1) +

b∑
j=1

(b+ 1− j)(αji + α−ji ).

Thus b + 1 ≥ −
b∑

j=1
(b + 1 − j)(αji + α−ji ). We sum the inequalities for i = 1, . . . , g. Since

the coefficients of L(u) are real we note that
g∑
i=1

αji =
g∑
i=1

α−ji . From (5.3) we see that Λj =

−qdj
g∑
i=1

ρji . Putting it together we get :

g(b+ 1) ≥ 2
b∑

j=1

(b+ 1− j)Λjq−
dj
2 .

Now, we let vary Li(s) so that gi →∞ and obtain the stated inequality.

Unfortunately, we are unable to say anything more in general without the knowledge of
some additional properties of λj . However, the next corollary shows that sometimes we can do
better.
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Corollary 5.4.2. If a family {Li(s)} is asymptotically exact then

∞∑
j=1

λjq
− dj

2 ≤ 1
2
,

provided one of the following conditions holds :

1. either it is asymptotically very exact or

2. λj ≥ 0 for any j.

Proof. To prove the statement of the corollary under the first condition we choose an ε > 0 and

b′ ∈ N such that the sum
∞∑

j=b′+1

|λj |q−
dj
2 < ε. Then we choose b′′ such that b′

b′′+1 < ε. Now we

apply the inequality from theorem 5.4.1 with b = b′′. We get :

1
2
≥

b′′∑
j=1

(
1− j

b′′ + 1

)
λjq
− dj

2 ≥
b′∑
j=1

(
1− j

b′′ + 1

)
λjq
− dj

2 +

+
b′′∑

j=b′+1

(
1− j

b′′ + 1

)
λjq
− dj

2 ≥ (1− ε)
∞∑
j=1

λjq
− dj

2 − 2ε.

So the first part of the corollary is true.
To prove the statement under the second condition we use the same trick. We take b′ ∈ N

such that b
b′+1 < ε. Then we apply theorem 5.4.1 with b = b′ and notice that the sum only

decreases when we drop the part
b′∑

j=b+1

(
1− j

b′+1

)
λjq
− dj

2 since λj ≥ 0. This gives the second

part of the corollary.

Remark 5.4.1. We notice that the corollary implies that any asymptotically exact family satis-
fying λj ≥ 0 for any j is asymptotically very exact. This and the statement of the corollary are
still true if assume that λj ≥ 0 for all but a finite number of j ∈ N.

Remark 5.4.2. The methods from the section 5.6 allow us to prove a little stronger statement.
See remark 5.6.2 for details.

5.4.2 Basic inequality for zeta functions

We have noticed before that even in the case of L-functions we do not get complete results
unless we assume that our family is asymptotically very exact or all the coefficients λf are
positive. While working with zeta functions we face the same problem. However, we will deal
with it in a different way for no general lower bound on the sums of the type (5.6) seems to be
available and such a lower bound would be definitely necessary since zeta functions are products
of L-functions both in positive and in negative powers.

Theorem 5.4.3. Let {ζk(s)} be an asymptotically exact family of zeta functions. Then for any
real s with de

2 < s < de+1
2 we have :

−
de∑
i=0

γi

qs−i/2 − wi
≤
∞∑
j=1

λjq
−sj ≤

de∑
i=0

γi

qs−i/2 + wi
.
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Proof. First of all, proposition 5.3.1 implies that it is enough to prove the inequality in the case
when ζk(s) = ζe,k and d = de.

Let us write the Stark formula from proposition 5.2.3 :

1
log q

ζ ′(s)
ζ(s)

=
n∑
i=1

wi

gi∑
j=1

1
qsρij − 1

.

We notice that all the terms are real for real s and

R(r, θ) = Re
reiθ

1− reiθ
=

r cos θ
1− 2r cos θ + r2

.

Applying this relation we see that

1
log q

ζ ′(s)
ζ(s)

=
d∑
i=0

wi

gi∑
j=1

R(qi/2−s, θij),

where ρkj = q−
k
2 eiθkj .

For 0 < r < 1 we have the bounds on R(r, θ) :

− r

r + 1
≤ R(r, θ) ≤ r

r − 1
.

From this we deduce that for s with d
2 < s < d+1

2 the following inequality holds

−
d∑
i=0

γi

qs−i/2 − wi
≤ −1

log q
ζ ′(s)
ζ(s)

≤
d∑
i=0

γi

qs−i/2 + wi
. (5.7)

The next step is to use theorem 5.5.2. For any s in the interval
(
d
2 ,

d+1
2

)
it gives that

lim
k→∞

−1
gk log q

·
ζ ′k(s)
ζk(s)

=
∞∑
j=1

λjq
− sj

2 .

Dividing (5.7) by g, passing to the limit and using the previous equality we get the statement
of the theorem.

Corollary 5.4.4. 1. If wde = 1 and either the family is asymptotically very exact or λj ≥ 0
for all j then

∞∑
j=1

λjq
− dej

2 ≤
de∑
i=0

γi

q(de−i)/2 + wi

2. If wde = −1 and either the family is asymptotically very exact or λj ≤ 0 for all j then

−
de∑
i=0

γi

q(de−i)/2 − wi
≤
∞∑
j=1

λjq
− dej

2 .

Proof. Let us suppose that wde = 1 (the other case is treated similarly). For an asymptotically

very exact family for any ε > 0 we can choose N > 0 such that
∞∑
j>N

|λj |q−
dej
2 < ε. Thus both

for a very exact family and a family with λj ≥ 0 for all j we have

N∑
j=1

λjq
−sj ≤

de∑
i=0

γi

qs−i/2 + wi
+ ε

for any real s with de
2 < s < de+1

2 . Passing to the limit when s → de
2 we get the statement of

the corollary.
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Remark 5.4.3. As before we see that any asymptotically exact family, such that wde sign(λj) = 1
for any j, is asymptotically very exact.

Remark 5.4.4. Though the corollary 5.4.4 implies the corollary 5.4.2, the basic inequality for
L-functions given by theorem 5.4.1 is different from the one obtained by application of theorem
5.4.3.

5.4.3 Examples

Example 5.4.1 (Curves over finite fields). For curves over finite fields we obtain once again the
classical basic inequality from [85] :

∞∑
j=1

2λjq−
j
2 =

∞∑
m=1

mφm

qm/2 − 1
≤ 1.

Of course, this is not an interesting example, since we used this inequality as our initial moti-
vation.

Example 5.4.2 (Varieties over finite fields). In a similar way, for varieties over finite fields we
get the inequality from [51, (8.8)] :

∞∑
m=1

mφm

q(2d−1)m/2 − 1
≤ (q(2d−1)/2 − 1)

β1

2
+
∑
2|i

βi

q(i−1)/2 + 1
+
∑
2-i

βi

q(i−1)/2 − 1

 .

With more efforts one can reprove most (if not all) of the inequalities from [51, (8.8)] in the
general context of zeta functions, since the main tools used in [51] are the explicit formulae.
However, we don not do it here as for the moment we are unable see any applications it might
have to particular examples of zeta functions.

Example 5.4.3 (Elliptic curves over function fields). The case of asymptotically bad families is
trivial : we don not obtain any interesting results here since all λj = 0.

Let us consider the base change case. Let us take an asymptotically very exact family of
elliptic curves obtained by a base change (by proposition 5.3.7 any family obtained by a base
change is asymptotically very exact, provided char Fq 6= 2, 3). We can apply corollary 5.4.2 to

obtain that
∞∑
j=1

λjq
−j/2 ≤ 1

2 . Using (5.5), one can rewrite it using φv,m as follows :

∑
v,m

mdvφv,m(αmv + ᾱmv )q−mdv

1− (αmv + ᾱmv )q−mdv
≤ ν + 4

2

(here ν = lim
i→∞

nEi/Ki
gKi

).

5.5 Brauer–Siegel type results

5.5.1 Limit zeta functions and the Brauer–Siegel theorem

Our approach to the Brauer–Siegel type results will be based on limit zeta functions.

Definition 5.5.1. Let {ζk(s)} be an asymptotically exact family of zeta functions. Then the
corresponding limit zeta function is defined as

ζlim(s) = exp

 ∞∑
f=1

λf
f
q−fs

 .
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Remark 5.5.1. If ζk(s) = ζfk(s) are associated to some arithmetic or geometric objects fk we
will denote the limit zeta function simply by ζ{fk}(s).

Remark 5.5.2. The basic inequality from theorem 5.4.3 can be reformulated in terms of ζlim(s)
as

−
de∑
i=0

γi

qs−i/2 − wi
≤ − 1

log q
ζ ′lim(s)
ζlim(s)

≤
de∑
i=0

γi

qs−i/2 + wi
.

Here are the first elementary properties of limit zeta functions :

Proposition 5.5.1. 1. For an asymptotically exact family of zeta functions {ζk(s)} the se-
ries for log ζlim(s) is absolutely and uniformly convergent on compacts in the domain
Re s > de

2 , defining an analytic function there.

2. If a family is asymptotically very exact then ζlim(s) is continuous for Re s ≥ de
2

3. If for a family we have λj ≥ 0 for any j and wde = 1, then the series for log ζlim(s) is
absolutely and uniformly convergent in the domain Re s ≥ de

2 − δ for some δ > 0.

Proof. The first part of the proposition obviously follows from proposition 5.3.1 together with
proposition 5.3.3.

By the definition of an asymptotically very exact sequence, the series for ζlim(s) is uniformly
and absolutely convergent for Re s ≥ de

2 so defines a continuous function in this domain. Thus
the second part is proven.

To get the third part we apply corollary 5.4.4 to see that our family is asymptotically very
exact. Then we use a well known fact that the domain of convergence of a Dirichlet series with
positive coefficients is an open half-plane Re s > σ.

It is important to see to which extent limit zeta functions are the limits of the corresponding
zeta functions over finite fields. The question is answered by the generalized Brauer–Siegel
theorem. Before stating it let us give one more definition :

Definition 5.5.2. For an asymptotically exact family of zeta functions {ζk(s)} the limit
lim
k→∞

log ζk(s)
gk

is called the Brauer–Siegel ratio of this family.

Theorem 5.5.2 (The generalized Brauer–Siegel theorem). For any asymptotically exact family
{ζk(s)} and any s with Re s > de

2 we have

lim
k→∞

log ζe,k(s)
gk

= log ζlim(s).

If, moreover, 2 Re s 6∈ Z, then

lim
k→∞

log ζk(s)
gk

= log ζlim(s).

The convergence is uniform in any domain de
2 + ε < Re s < de+1

2 − ε, ε ∈
(
0, 1

2

)
.

Proof. To get the first statement we apply proposition 5.3.3 and exchange the limit when k →∞
and the summation, which is legitimate since the series in question are absolutely and uniformly
convergent in a small (but fixed) neighbourhood of s.

To get the second statement we apply proposition 5.3.1, which gives us :

lim
k→∞

log ζn,k(s)
gk

= 0.

Now the second part of the theorem follows from the first.
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Remark 5.5.3. It might be unclear, why we call such a statement the Brauer–Siegel theorem.
We will see below in subsection 5.5.3 that the above theorem indeed implies a natural analogue
of the Brauer–Siegel theorem for curves and varieties over finite fields. It is quite remarkable
that the proof of theorem 5.5.2 is very easy once one gives proper definitions.

Remark 5.5.4. Let us sketch another way to prove the generalized Brauer–Siegel theorem. It
might seem unnecessarily complicated but it has the advantage of being applicable in the number
field case when we no longer have the convergence of logLk(s) for Re s > d

2 . We will deal with
L-functions to simplify the notation. The main idea is to prove using Stark formula (proposition
5.2.3 in the case of L-functions over finite fields) that L′k(s)

Lk(s) ≤ C(ε)gk for any s with Re s ≥ d
2 +ε.

Then we apply the Vitali theorem from complex analysis, which states that for a sequence of
bounded holomorphic functions in a domain D it is enough to check the convergence at a set
of points in D with a limit point in D.

Remark 5.5.5. It is natural to ask, what is the behaviour of limit zeta or L-functions for Re s ≤
de
2 . Unfortunately nice properties of L-functions such as the functional equation or the Riemann

hypothesis do not hold for Llim(s). This can be seen already for families of zeta functions
of curves. The point is that the behaviour of Llim(s) might considerably differ from that of
lim
k→∞

logLk(s)
gk

when we pass the critical line.

5.5.2 Behaviour at the central point

It seems reasonable to ask, what is the relation between limit zeta functions and the limits
of zeta functions over finite fields on the critical line (that is for Re s = de

2 ). This relation seems

to be rather complicated. For example, one can prove that the limit lim
k→∞

1
gk

ζ′k(1/2)

ζk(1/2) is always 1

in families of curves (this can be seen from the functional equation), which is definitely not true
for the value ζ′lim(1/2)

ζlim(1/2) .

However, the knowledge of this relation is important for some arithmetic problems (see
the example of elliptic surfaces in the next subsection). The general feeling is that for “good”
families the statement of the generalized Brauer–Siegel theorem holds for s = de

2 . There are
very few cases when we know it (see section 5.7 for a discussion) and we, actually, can not even
formulate this statement as a conjecture, since it is not clear what conditions on L-functions
we should impose.

Still, in general one can prove the “easy” inequality. The term is borrowed from the classical
Brauer–Siegel theorem from the number field case, where the upper bound is known uncondi-
tionally (and is easy to prove) and the lower bound is not proven in general (one has to assume
either GRH or a certain normality condition on the number fields in question). This analogy
does not go too far though for in the classical Brauer–Siegel theorem we work far from the
critical line and here we study the behaviour of zeta functions on the critical line itself.

Let {ζk(s)} be an asymptotically exact family of zeta functions. We define rk and ck using
the Taylor series expansion

ζk(s) = ck

(
s− de

2

)rk
+O

((
s− de

2

)rk+1
)
.

Theorem 5.5.3. For an asymptotically very exact family of zeta functions {ζk(s)} such that
wde = 1 we have :

lim
k→∞

log |ck|
gk

≤ log ζlim

(
de
2

)
.
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Proof. Replacing the family {ζk(s)} by the family {ζe,k(s)} we can assume that d = de.

Let us write

ζk(s) = ck

(
s− d

2

)rk
Fk(s),

where Fk(s) is an analytic function in the neighbourhood of s = d
2 such that Fk

(
d
2

)
= 1. Let us

put s = d
2 + θ, where θ > 0 is a small positive real number. We have

log ζk(d2 + θ)
gk

=
log ck
gk

+ rk
log θ
gk

+
logFk(d2 + θ)

gk
.

To prove the theorem we will construct a sequence θk such that

1. 1
gk

log ζk
(
d
2 + θk

)
→ log ζlim

(
d
2

)
;

2. rk
gk

log θk → 0;

3. lim inf 1
gk

logFk
(
d
2 + θk

)
≥ 0.

For each natural number N we choose θ(N) a decreasing sequence such that∣∣∣∣ζlim(d2
)
− ζlim

(
d

2
+ θ(N)

)∣∣∣∣ < 1
2N

.

This is possible since ζlim(s) is continuous for Re s ≥ d
2 by proposition 5.5.1. Next we choose a

sequence k′(N) with the property :∣∣∣∣ 1
gk

log ζk

(
d

2
+ θ

)
− log ζlim

(
d

2
+ θ

)∣∣∣∣ < 1
2N

for any θ ∈ [θ(N + 1), θ(N)] and any k ≥ k′(N). This is possible by theorem 5.5.2. Then we
choose k′′(N) such that

rk log θ(N + 1)
gk

≤ θ(N)
N

for any k ≥ k′′(N), which can be done thanks to corollary 5.6.2 that gives us for an asymp-
totically very exact family rk

gk
→ 0. Finally, we choose an increasing sequence k(N) such that

k(N) ≥ max(k′(N), k′′(N)) for any N.
Now, if we define N = N(k) by the condition k(N) ≤ k ≤ k(N + 1) and let θk = θ(N(k)),

then from the conditions imposed while defining θk we automatically get (1) and (2). The
delicate point is (3). We apply the Stark formula from proposition 5.2.3 to get an estimate on(
logFk

(
d
2 + θ

))′
:

1
gk

(
log ζk

(
d

2
+ θ

)
+ rk log θ

)′
= − log q

2gk

d∑
i=0

wigi+

+
1
gk

d−1∑
i=0

wi
∑

Li(θij)=0

1
d
2 + θ − θij

+
1
gk

∑
Ld(θdj)=0

1
d
2 + θ − θdj

.

The first term on the right hand side is clearly bounded by − log q from below. The first sum
involving L-functions is also bounded by a constant C1 as can be seen applying the Stark formula
to individual L-functions and then using proposition 5.3.1. The last sum is non-negative. Thus,
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we see that 1
gk

(
logFk

(
d
2 + θ

))′ ≥ C for any small enough θ. From this and from the fact that
Fk
(
d
2

)
= 1 we deduce that

1
gk

logFk

(
d

2
+ θk

)
≥ Cθk → 0.

This proves (3) as well as the theorem.

Remark 5.5.6. The proof of the theorem shows the importance of “low” zeroes of zeta functions
(that is zeroes close to s = d

2) in the study of the Brauer–Siegel ratio at s = d
2 . The lack of

control of these zeroes is the reason why we can not prove a lower bound on lim
k→∞

log |ck|
gk

.

Remark 5.5.7. If we restrict our attention to L-functions with integral coefficients (i. e. such
that L(u) has integral coefficients), then we can see that the ratio log |ck|

gk
is bounded from below

by −d log q, at least for even d. This follows from a simple observation that if a polynomial with
integral coefficients has a non-zero value at an integer point then this value is greater then or
equal to one. One may ask whether there is a lower bound for arbitrary d and whether anything
similar holds in the number field case.

5.5.3 Examples

Example 5.5.1 (Curves over finite fields). First of all, let us show that the generalized Brauer–
Siegel theorem 5.5.2 implies the standard Brauer–Siegel theorem for curves over finite fields
from [86].

Let hX be the number of Fq rational pints on the Jacobian of X, i. e. hX = |Pic0
Fq(X)|.

Corollary 5.5.4. For an asymptotically exact family of curves {Xi} over a finite field Fq we
have :

lim
i→∞

log hi
gi

= log q +
∞∑
f=1

φf log
qf

qf − 1
. (5.8)

Proof. It is well known that for a curve X the number hX can be expressed as hX = LX(1),
where LX(u) is the numerator of the zeta function of X. Using the functional equation for ζX(s)
we see that this expression is equal to LX(0) = LX(1) + g log q.

The right hand side of (5.8) can be written as log q + 2 log ζ{Xi}(1), where ζ{Xi}(s) is the
limit zeta function (the factor 2 appears from the definition of log ζ{Xi}(s), in which we divide
by 2g and not by g). Thus it is enough to prove that

lim
i→∞

logLXi(1)
2gi

= log ζ{Xi}(1).

This follows immediately from the first equality of theorem 5.5.2.

Using nearly the same proof we can obtain one more statement about the asymptotic be-
haviour of invariants of function fields. To formulate it we will need to define the so called
Euler–Kronecker constants of a curve X (see [41]) :

Definition 5.5.3. Let X be a curve over a finite field Fq and let

ζ ′X(s)
ζX(s)

= −(s− 1)−1 + γ0
X + γ1

X(s− 1) + γ2
X(s− 1)2 + . . .

be the Taylor series expansion of ζ′X(s)

ζX(s) at s = 1. Then γX = γ0
X is called the Euler–Kronecker

constant of X and γkX , k ≥ 1 are be called the higher Euler-Kronecker constants.
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We also define the asymptotic Euler-Kronecker constants γk{Xi} from :

ζ ′{Xi}(s)

ζ{Xi}(s)
= γ0

{Xi} + γ1
{Xi}(s− 1) + γ2

{Xi}(s− 1)2 + . . .

(ζ{Xi}(s) is holomorphic and non-zero at s = 1 so its logarithmic derivative has no pole at this
point).

The following result generalizes theorem 2 from [41] :

Corollary 5.5.5. For an asymptotically exact family of curves {Xi} we have

lim
i→∞

γki
gi

= γk{Xi}

for any positive integer k. In particular,

lim
i→∞

γi
gi

= −
∞∑
f=1

φff log q
qf − 1

.

Proof. . We apply the first equality from theorem 5.5.2. Using the explicit expression for the
negligible part of zetas as (1− q−s)(1− q1−s), we see that

lim
i→∞

log ζXi(s)
2gi

= log ζ{Xi}(s)

for any s, such that Re s > 1
2 and s 6= 1 + 2πk

log q , k ∈ Z and the convergence is uniform in
a < |s − 1| < b for small enough a and b. We take the derivative of both sides and use the
Cauchy integral formula to get the statement of the corollary.

Remark 5.5.8. It seems not completely uninteresting to study the behaviour of γkX “on the finite
level”, i.e. to try to obtain bounds on γkX for an individual curve X. This was done in [41] for γX .
In the general case the explicit version of the generalized Brauer–Siegel theorem from chapter
2 might be useful.

Remark 5.5.9. It is worth noting that the above corollaries describe the relation between
log ζXi(s) and log ζ{Xi}(s) near the point s = 1. The original statement of theorem 5.5.2 is
stronger since it gives this relation for all s with Re s > 1

2 .

Example 5.5.2 (Varieties over finite fields). Just as for curves, for varieties over finite fields we
can get similar corollaries concerning the asymptotic behaviour of ζXi(s) close to s = d. We
give just the statements, since the proofs are nearly the same as before.

The following result is the Brauer–Siegel theorem for varieties proven in [92].

Corollary 5.5.6. For an asymptotically exact family of varieties {Xi} over a finite field Fq we
have :

lim
i→∞

log |κi|
b(Xi)

=
∞∑
f=1

φf log
qfd

qfd − 1
,

where κi = Ress=d ζXi(s).

In the next corollary we use the same definition of the Euler–Kronecker constants for varieties
over finite fields as in the previous example for curves :
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Corollary 5.5.7. For an asymptotically exact family of varieties {Xi} we have lim
i→∞

γki
b(Xi)

= γk{Xi}

for any k. In particular, lim
i→∞

γi
b(Xi)

= −
∞∑
f=1

φff log q

qfd−1
.

Example 5.5.3 (Elliptic curves over function fields). Let us recall first the Brauer–Siegel type
conjectures for elliptic curves over function fields due to Hindry–Pacheco [32] and Kunyavskii–
Tsfasman [49].

For an elliptic curve E/K, K = Fq(X) we define cE/K and rE/K from LE/K(s) = cE/K(s−
1)rE/K + o ((s− 1)rE/K ) . The invariants rE/K and cE/K are important from the arithmetical
point of view, since the Birch and Swinnerton-Dyer conjecture predicts that rE/K is equal to
the rank of the Mordell–Weil group of E/K and cE/K can be expressed via the order of the
Shafarevich–Tate group, the covolume of the Mordell–Weil lattice (the regulator) and some
other quantities related to E/K which are easier to control.

Conjecture 5.5.8 (Hindry–Pacheco). Let Ei run through a family of pairwise non-isomorphic
elliptic curves over a fixed function field K. Then

lim
i→∞

log |cEi/K |
h(Ei)

= 0,

where h(Ei) is the logarithmic height of Ei.

Remark 5.5.10. We could have divided log |cEi/K | by nEi in the statement of the above conjec-
ture since h(Ei) and nEi have essentially the same order of growth.

Conjecture 5.5.9 (Kunyavskii–Tsfasman). For a family of elliptic curves {Ei/Ki} obtained by
a base change we have :

lim
i→∞

log |cEi/Ki |
gKi

= −
∑

v∈X,f≥1

φv,f log
|Ev(FNvf )|

Nvf
,

where E = E0, X = X0.

One can see that the above conjectures are both the statements of the type considered in
the subsection 5.5.2. It is quite obvious for the first conjecture and for the second conjecture we
have to use the explicit expression for the limit L-functions :

logL{Ei/Ki}(s) = − 1
ν + 4

∑
v,f

φv,f log
(

1− (αfv + ᾱfv )Nv−fs + Nvf(1−2s)
)
.

One can unify these two conjectures as follows :

Conjecture 5.5.10. For an asymptotically very exact family of elliptic curves over function fields
{Ei/Ki} we have :

lim
i→∞

log |cEi/Ki |
gi

= logL{Ei/Ki}(1),

where gi is the degree of LEi/Ki(s).

Theorems 5.5.2 and 5.5.3 imply the following result in the direction of the above conjectures :
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Theorem 5.5.11. For an asymptotically very exact family of elliptic curves {Ei/Ki} the following
identity holds :

lim
i→∞

logLEi/Ki(s)
gi

= logL{Ei/Ki}(s),

for Re s > 1 (here gi = nEi + 4gKi − 4). Moreover,

lim
i→∞

log |cEi/Ki |
gi

≤ logL{Ei/Ki}(1).

Remark 5.5.11. If we consider split families of elliptic curves (i.e. Ei = E ×Xi, where E/Fq is
a fixed elliptic curve) then the proof of theorem 2.1 from [49] gives us that the question about
the behaviour of LEi/Xi(s) at s = 1 translates into the same question concerning the behaviour
of ζXi(s) on the critical line. More precisely,

Proposition 5.5.12. Let ψ = q1/2+iθ, ψ̄ = q1/2−iθ be the eigenvalues of the Frobenius acting
on H1(E). Then conjecture 5.5.10 holds provided that lim

i→∞

log |ζXi (±θ)|
gi

= log ζ{Xi}(±θ) (where

ζXi(θ) is understood as the first non-zero coefficient in the Taylor expansion at s = θ). The
above statements are equivalent if the curve E is supersingular, i.e. θ = 0.

So, to prove the simplest case of conjecture 5.5.10 we have to understand the asymptotic
behaviour of zeta functions of curves over finite fields on the critical line. Unfortunately, this
seems to be inaccessible at the moment.

5.6 Distribution of zeroes

5.6.1 Main results

In this section we will prove certain results about the limit distribution of zeroes in families
of L-functions. As a corollary we will see that the multiplicities of zeroes in asymptotically very
exact families of L-functions can not grow too fast.

Let C = C[−π, π] be the space of real continuous functions on [−π, π] with topology of
uniform convergence. The space of measures µ on [−π, π] is by definition the space M, which
is topologically dual to C. The topology on M is the ∗-weak one : µi → µ if and only if
µi(f)→ µ(f) for any f ∈ C.

The space C can be considered as a subspace of M : if φ(x) ∈ C then µφ(f) =∫ π
−π f(x)φ(x) dx. The subspace C is dense in M in ∗-weak topology.

Let L(s) be an L-function and let ρ1, . . . , ρg be the zeroes of the corresponding polynomial
L(u). Define θk ∈ (−π, π] by ρk = q−d/2eiθk . One can associate a measure to L(s) :

µL(f) =
1
g

g∑
k=1

δθk(f), (5.9)

where δθk is the Dirac measure supported at θk, i.e. δθk(f) = f(θk) for an f ∈ C.
The main result of this section is the following one :

Theorem 5.6.1. Let {Lj(s)} be an asymptotically very exact family of L-functions. Then the
limit Mlim = lim

j→∞
Mj exists. Moreover, Mlim is a nonnegative continuous function given by

an absolutely and uniformly convergent series :

Mlim(x) = 1− 2
∞∑
k=1

λk cos(kx)q−
dk
2 .
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Proof. The absolute and uniform convergence of the series follows from the definition of an
asymptotically very exact family. It is sufficient to prove the convergence of measures on the
space C.

The linear combinations of cos(mx) and sin(mx) are dense in the space of continuous func-
tions C, so it is enough to prove that for any m = 0, 1, 2, . . . we have :

lim
j→∞

Mj(cos(mx)) =Mlim(cos(mx)), (5.10)

and
lim
j→∞

Mj(sin(mx)) =Mlim(sin(mx)). (5.11)

The corollary 5.2.2 shows that :

Mj(cos(mx)) =
gj∑
k=1

cos(mθkj) = −2Λmq−
dm
2

for m 6= 0 andMj(1) = gj . Dividing by gj and passing to the limit when j →∞ we get (5.10).
Now, we note, that if ρ = eiθ, with θ 6= kπ is a zero of L(u) then ρ = ei(θ+π) is also a zero

of L(u) with the same multiplicity. Thus Mj(sin(mx)) = 0 =Mlim(sin(mx)) for any j and m.
So we get (5.11) and the theorem is proven.

Corollary 5.6.2. Let {ζj(s)} be an asymptotically very exact family of zeta functions with
wde = 1 and let rj be the order of zero of ζj(s) at s = de

2 . Then

lim
j→∞

rj
gj

= 0.

Proof. Suppose that lim sup rj
gj

= ε > 0. Taking a subsequence we can assume that lim
j→∞

rj
gj

= ε.

Taking a subsequence once again and using proposition 5.3.4 we can assume that we are working
with an asymptotically very exact sequence of L-functions {Lj(s)} = {Ljde(s)} for which the
same property concerning rj holds.

By the previous theorem lim
j→∞

Mj = Mlim. Let us take an even continuous non-

negative function f(x) ∈ C[−π, π] with the support contained in (− ε
α ,

ε
α), where α =

4 max{
∫ π
−πMlim(x) dx, 1} and such that f(0) = 1. We see that

ε ≤ lim
j→∞

Mj(f(x)) =
∫ π

−π
f(x)Mlim(x) dx ≤ ε

2
,

so we get a contradiction. Thus the theorem is proven.

Remark 5.6.1. It is easy to see that the same proof gives that the multiplicity of the zero at
any particular point of the critical line grows asymptotically slower than g.

Remark 5.6.2. Using theorem 5.6.1 one can give another proof of the basic inequality for asymp-
totically very exact families of L-functions(corollary 5.4.2). Indeed all the measures defined by
(5.9) are non-negative. Thus the limit measure Mlim must have a non-negative density at any
point, in particular at x = 0. This gives us exactly the basic inequality. In this way we get an
interpretation of the difference between the right hand side and the left hand side of the basic
inequality as “the asymptotic number of zeroes of Lj(s), accumulating at s = d

2”.
In fact, using the same reasoning as before, we get a family of inequalities (which are

interesting when not all the coefficients λf are positive) :
∞∑
k=1

λk cos(kx)q−
dk
2 ≤ 1

2

for any x ∈ R.
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5.6.2 Examples

Example 5.6.1 (Curves over finite fields). In the case of curves over finite fields we recover the
theorem 2.1 from [86] :

Corollary 5.6.3. For an asymptotically exact family {Xi} of curves over a finite field Fq the limit
M{Xi} = lim

i→∞
MXi is a continuous function given by an absolutely and uniformly convergent

series :

M{Xi}(x) = 1−
∞∑
k=1

kφkhk(x),

where

hk(x) =
qk/2 cos(kx)− 1

qk + 1− 2qk/2 cos(kx)
.

Proof. This follows from theorem 5.6.1 together with the following series expansion :
∞∑
l=1

t−l cos(lkx) =
t cos(kx)− 1

t2 + 1− 2t cos(kx)
.

Example 5.6.2 (Varieties over finite fields). We can not say much in this case since the zero
distribution theorem 5.6.1 applies only to L-functions. The only thing we get is that the mul-
tiplicity of zeroes on the line Re s = d − 1

2 divided by the sum of Betti numbers tends to zero
(corollary 5.6.2).

Example 5.6.3 (Elliptic curves over function fields). Let us consider first asymptotically bad
families of elliptic curves. We have the following corollary of theorem 5.6.1.

Corollary 5.6.4. For an asymptotically bad family of elliptic curves {Ei} over function fields the
zeroes of LEi(s) become uniformly distributed on the critical line when i→∞.

This result in the particular case of elliptic curves over the fixed field Fq(t) was obtained in
[64]. In fact, unlike us, Michel gives an estimate for the difference Mi −M{Ei} in terms of the
conductor nEi . It would be interesting to have such a bound in general.

Corollary 5.6.5. For an asymptotically very good family of elliptic curves {Ei/Ki} obtained by a
base change the limit M{Ei/Ki} = lim

i→∞
MEi/Ki is a continuous function given by an absolutely

and uniformly convergent series :

M{Ei/Ki}(x) = 1− 2
ν + 4

∑
v,f

φv,ffdv

∞∑
k=1

αkv + ᾱkv
qfdvk

cos(fdvkx).

Corollary 5.6.6. For a family of elliptic curves {Ei/Ki} obtained by a base change

lim
i→∞

ri
gi

= 0.

Proof. By proposition 5.3.7 any such family contains an asymptotically exact subfamily so we
can apply corollary 5.6.2.

Remark 5.6.3. For a fixed field K and elliptic curves over it a similar statement can be deduced
from the bounds in [7]. However, in the case of the base change Brumer’s bounds do not imply
corollary 5.6.2. It would be interesting to see, what bounds one can get for the ranks of individual
elliptic curves when we vary the ground field K. Getting such a bound should be possible with
a proper choice of a test function in the explicit formulae.
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5.7 Open questions and further research directions

In this section we would like to gather together the questions which naturally arose in the
previous sections. Let us start with some general questions. First of all :

Question 5.7.1. To which extent the formal zeta and L-functions defined in section 5.2 come
from geometry ?

One can make it precise in several ways. For example, it is possible to ask whether any
L-function of weight d, such that L(u) has integral coefficients is indeed the characteristic
polynomial of the Frobenius automorphism acting on the d-th cohomology group of some variety
V/Fq. A partial answer to this question when d = 1 is provided by the Honda–Tate theorem on
abelian varieties [81]. The same question can be asked about motives over Fq. This is similar to
what is conjectured about L-functions from the so called Selberg class in the number field case
(modularity, Galois representations side, etc.) [83].

Question 5.7.2. Describe the set {(λ1, λ2, . . . )} for asymptotically exact (very exact) families of
zeta functions (L-functions).

There are definitely some restrictions on this set, namely those given by various basic inequa-
lities (theorems 5.4.1 and 5.4.3, corollary 5.6.2). It would be interesting to see whether there
are any others. We emphasize that the problem is not of arithmetic nature since we do not
assume that the coefficients of polynomials, corresponding to L-functions, are integral. It would
be interesting to see what additional restrictions the integrality condition on the coefficients of
L(u) might give. Note that, using geometric constructions, Tsfasman and Vlăduţ [86] proved
that the families satisfying λf ≥ 0 for any f and the basic inequality are all realized when q is
a square and d = 1. This implies the same statement for formal L-functions and any q and d.
However, our new L-function might no longer have integral coefficients.

Question 5.7.3. How many asymptotically good (very good) families are there among all asymp-
totically exact (very exact) families ?

The “how many” part of the question should definitely be made more precise. One way
to do this is to consider the set Vg of the vectors of coefficients of polynomials corresponding
to L-functions of degree g and its subset Vg(f, a, b) consisting of the vectors of coefficients of
polynomials corresponding to L-functions with a <

Λf
g < b. A natural question is whether the

ratio of the volume of Vg(f, a, b) to the volume of Vg has a limit when g → ∞ and what this
limit is. See [13] for some information about Vg. The question is partly justified by the fact that
it is difficult to construct asymptotically good families of curves. We would definitely like to
know why.

Let us now ask some questions concerning the concrete results on zeta and L-functions
proven in the previous sections.

Question 5.7.4. Is it true that the generalized Brauer–Siegel theorem 5.5.2 holds on the line
Re s = 1

2 for some (most) asymptotically very exact families ?

It is probable that without the additional arithmetic conditions on the family the statement
does not hold. The most interesting families here are the families of elliptic curves over function
fields considered in subsection 5.5.3 due to the arithmetic applications. For the moment the
author is not aware of the existence of a single family of geometric origin for which we know
the result. One might try to look at particular examples of families of curves over finite fields
where the zeta function is more or less explicitly known. These include the Fermat curves [46]
and the Jacobi curves [48].
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The only examples we know that support the conjecture come from the number field case.
It is known that there exists a sequence {di} in N of density at least 1

2 such that

lim
i→∞

log ζQ(
√
di)

(1
2)

log di
= 0

(cf. [43]). The techniques of the evaluation of mollified moments of Dirichlet L- functions used in
that paper is rather involved. It would be interesting to know whether one can obtain analogous
results in the function field case. The related questions in the function field case are studied in
[46]. It is not clear whether the results on the one level densities obtained there can be applied
to the question of finding a lower bound on log |ci|

gi
for some positive proportion of fields (both

in the number field and in the function field cases).

Question 5.7.5. Prove the generalized Brauer–Siegel theorem 5.5.2 with an explicit error term.

This was done for curves over finite fields in chapter 2 and looks quite feasible in general. It
is also worth looking at particular applications that such a result might have, in particular one
may ask what bounds on the Euler–Kronecker constants it gives.

Question 5.7.6. How to characterize measures corresponding to asymptotically very exact fa-
milies ?

This was done in [86] for families such that λf ≥ 0 for all f. The general case remains open.

Question 5.7.7. Estimate the error term in theorem 5.6.1.

As it was mentioned before, in the case of elliptic curves over Fq(t) the estimates were carried
out in [64].

Question 5.7.8. Find explicit bounds on the orders r of zeroes of L-functions on the line Re s = d
2 .

The corollary 5.6.2 gives that the ratio ri
gi
→ 0 for asymptotically very exact families (here

ri is the multiplicity of the zero). In a particular case of elliptic curves over a fixed function
field Brumer in [7] gives a bound which grows asymptotically slower than the conductor. Using
explicit formulae with a proper choice of test functions, it should be possible to give such upper
bounds for families obtained by a base change if not in general.

Let us finally ask a few more general questions.

Question 5.7.9. How can one apply the results of this chapter to get the information about the
arithmetic or geometric properties of the objects to which L-functions are associated ?

We carried out this task (to a certain extent) in the case of curves and varieties over finite
fields and elliptic curves over function fields. Additional examples are more than welcome.

The last but not least :

Question 5.7.10. What are the number field analogues of the results obtained in this chapter ?

It seems that most of the results can be generalized to the framework of the Selberg class
(as described, for example, in [42, Chapter 5]), subject to imposing some additional hypothesis
(such as the Generalized Riemann Hypothesis, the Generalized Ramanujan Conjectures, etc.).
Of course, one will have to overcome quite a lot of analytical difficulties on the way (compare,
for example, [86] and [87]).

We hope to return to this interesting and promising subject later on.
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Deuxième partie

Variétés abéliennes de dimension 3
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Chapitre 6

Jacobians among abelian threefolds :
a formula of Klein and a question of
Serre (with G. Lachaud and C.
Ritzenthaler)

6.1 Introduction

6.1.1 Torelli theorem

Let k be an algebraically closed field and g ≥ 1 be an integer. If X is a (nonsingular
irreducible projective) curve of genus g over k, Torelli’s theorem states that the map X 7→
(JacX, j), associating to X its Jacobian together with the canonical polarization j, is injective.
The determination of the image of this map is a long time studied question.

When g = 3, the moduli space Ag of principally polarized abelian varieties of dimension
g and the moduli space Mg of nonsingular algebraic curves of genus g are both of dimension
g(g + 1)/2 = 3g − 3 = 6. According to Hoyt [34] and Oort and Ueno [69], the image of M3 is
exactly the space of indecomposable principally polarized abelian threefolds. Moreover if k = C,
Igusa [39] characterized the locus of decomposable abelian threefolds and that of hyperelliptic
Jacobians, making use of two particular modular forms Σ140 and χ18 on the Siegel upper half
space of degree 3. A similar characterization also exists in case of g = 2 (cf. [58]).

Assume now that k is any field and g ≥ 1. J.-P. Serre noticed in [55] that a precise form
of Torelli’s theorem reveals a mysterious obstruction for a geometric Jacobian to be a Jacobian
over k. More precisely, he proved the following :

Theorem 6.1.1. Let (A, a) be a principally polarized abelian variety of dimension g ≥ 1 over
k, and assume that (A, a) is isomorphic over k to the Jacobian of a curve X0 of genus g defined
over k. The following alternative holds :

1. If X0 is hyperelliptic, there is a curve X/k isomorphic to X0 over k such that (A, a) is
k-isomorphic to (JacX, j).

2. If X0 is not hyperelliptic, there is a curve X/k isomorphic to X0 over k, and a quadratic
character

ε : Gal(ksep/k) −−−−→ {±1}

such that the twisted abelian variety (A, a)ε is k-isomorphic to (JacX, j). The character
ε is trivial if and only if (A, a) is k-isomorphic to a Jacobian.
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Thus, only case (1) occurs if g = 1 or g = 2, with all curves being elliptic or hyperelliptic. In
this chapter we completely resolve for fields of characteristic zero the first previously unknown
case g = 3.

6.1.2 Curves of genus 3

Assume now again g = 3. Let there be given an indecomposable principally polarized abelian
threefold (A, a) defined over k. In a letter to J. Top [75], J.-P. Serre asked a twofold question :

– How to decide, knowing only (A, a), that X is hyperelliptic ?
– If X is not hyperelliptic, how to compute the quadratic character ε ?
Assume that k ⊂ C. The first question can easily be answered using the forms Σ140 and χ18.

As for the second question, roughly speaking, Serre suggested that ε is trivial if and only if χ18

is a square in k× (see Th.6.4.2 for a more precise formulation). This assertion was motivated by
a formula of Klein [47] relating the modular form χ18 (in the notation of Igusa) to the square
of the discriminant of plane quartics, which more or less gives the ‘only if’ part of the claim.
In [50] Serre’s assertion was justified for a three dimensional family of abelian varieties and in
particular the absolute constant involved in Klein’s formula was determined.

In this chapter we prove that Serre’s assertion is valid for any abelian threefold, thus giving
an algorithm which allows to determine whether a given principally polarized abelian threefold
over k is a Jacobian over k. In order to do so, we start by taking a broader point of view, valid
for any g > 1.

1. We look at the action of k-isomorphisms on Siegel modular forms defined over k and we
define invariants of k-isomorphism classes of abelian varieties over k.

2. We link Siegel modular forms, Teichmüller modular forms and invariants of plane curves.

Once these two goals are achieved, Serre’s assertion can be rephrased as the following stra-
tegy :

– use (2) to prove that a certain Siegel modular form f is a suitable n-th power with n > 1
on the Jacobian locus ;

– use (1) to distinguish between Jacobians and their twists. Indeed, the action of a twist on
f may change its value by a non n-th power and then we have a criterion to distinguish
Jacobians according to (2) of Th.6.1.1.

For g = 3, Klein’s formula shows that the form χ18 is a square on the Jacobian locus and
that this is enough to characterize this locus. On the other hand, we show that the natural
generalization χh, h = 2g−2(2g + 1) no longer gives such a characterization when g > 3.
The relevance of Klein’s formula in this problem was one of Serre’s insights. We would like
to point out that we do not actually need the full strength of Klein’s formula to work out
our strategy. Indeed, we do not go all the way from Siegel modular form to invariants. We
use instead a formula due to Ichikawa relating χ18 to the square of a Teichmüller modular
form, denoted µ3,9. However we think that the connection between Siegel modular forms and
invariants is interesting enough in its own, besides the fact that it gives a new rigorous proof of
Klein’s formula. Note that, if the relation between µ3,9 and χ18 is quite present in the literature,
the relation between χ18 and the discriminant was somehow lost, apart from Serre’s remark
in the letter to J. Top. It eventually give rise to the question of a direct proof of the relation
between µ3,9 and the discriminant (see Rem.6.4.1).

The chapter is organized as follows. In §6.2, we review the necessary elements from the theory
of Siegel and Teichmüller modular forms. Only §6.2.4 is original : we introduce the action of
isomorphisms and see how the action of twists is reflected on the values of modular forms. In
§6.3, we link modular forms and certain invariants of ternary forms. Finally in §6.4 we deal with
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the case g = 3. We first give a proof of Klein’s formula and then we justify the validity of Serre’s
assertion. Finally we explain the reasons behind the failure of the obvious generalization of the
theory in higher dimensions and state some natural questions.

6.2 Siegel and Teichmüller modular forms

6.2.1 Geometric Siegel modular forms

The references are [8], [11], [17], [20]. Let g > 1 and n > 0 be two integers and Ag,n be the
moduli stack of principally polarized abelian schemes of relative dimension g with symplectic
level n structure. Let π : Vg,n −→ Ag,n be the universal abelian scheme, fitted with the zero
section ε : Ag,n −→ Vg,n, and

π∗Ω1
Vg,n/Ag,n

= ε∗Ω1
Vg,n/Ag,n

−−−−→ Ag,n

the rank g bundle induced by the relative regular differential forms of degree one on Vg,n over
Ag,n. The relative canonical bundle over Ag,n is the line bundle

ω =
g∧
ε∗Ω1

Vg,n/Ag,n
.

For a projective nonsingular variety X defined over a field k, we denote by

Ω1
k[X] = H0(X,Ω1

X ⊗ k)

the finite dimensional k-vector space of regular differential forms on X defined over k. Hence,
the fibre of the bundle Ω1

Vg,n/Ag,n
over A ∈ Ag,n(k) is equal to Ω1

k[A], and the fibre of ω is the
one-dimensional vector space

ω[A] =
g∧

Ω1
k[A].

We put Ag = Ag,1 and Vg = Vg,1. Let R be a commutative ring and h be a positive integer. A
geometric Siegel modular form of genus g and weight h over R is an element of the R-module

Sg,h(R) = Γ(Ag ⊗R,ω⊗h).

Note that for any n ≥ 1, we have an isomorphism

Ag ' Ag,n/ Sp2g(Z/nZ).

If n ≥ 3, as shown in [67], from the rigidity lemma of Serre [73] we can deduce that the moduli
space Ag,n can be represented by a smooth scheme over Z[ζn, 1/n]. Hence, for any algebra R
over Z[ζn, 1/n], the module Sg,h(R) is the submodule of

Γ(Ag,n ⊗Z[ζn,1/n] R,ω
⊗h)

consisting of the elements invariant under Sp2g(Z/nZ).
Assume now that R = k is a field. If f ∈ Sg,h(k), A is a principally polarized abelian variety

of dimension g defined over k and ω is a basis of ωk[A], define

f(A,ω) = f(A)/ω⊗h. (6.1)

In this way such a modular form defines a rule which assigns the element f(A,ω) ∈ k to
every such pair (A,ω) and such that :

1. f(A, λω) = λ−hf(A,ω) for any λ ∈ k×.
2. f(A,ω) depends only on the k-isomorphism class of the pair (A,ω).

Conversely, such a rule defines a unique f ∈ Sg,h(k). This definition is a straightforward
generalization of that of Deligne-Serre [12] and Katz [45] if g = 1.
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6.2.2 Complex uniformisation

Assume R = C. Let
Hg =

{
τ ∈Mg(C) | tτ = τ, Im τ > 0

}
be the Siegel upper half space of genus g and Γ = Sp2g(Z). As explained in [8, §2], The complex
orbifold Ag(C) can be expressed as the quotient Γ\Hg where Γ acts by

M.τ = (aτ + b) · (cτ + d)−1 if M =
(
a b
c d

)
∈ Γ.

The group Z2g acts on Hg × Cg by

v.(τ, z) = (τ, z + τm+ n) if v =
(
m
n

)
∈ Z2g.

If Ug = Z2g\(Hg × Cg), the projection

π : Ug −−−−→ Hg

defines a universal principally polarized abelian variety with fibres

Aτ = π−1(τ) = Cg/(Zg + τZg).

Let j(M, τ) = cτ + d and define the action of Γ on Hg × Cg by

M.(τ, (z1, . . . , zg)) = (M.τ, tj(M, τ)−1 · (z1, . . . , zg)) if M ∈ Γ.

The map tj(M, τ)−1 : Cg → Cg induces an isomorphism :

ϕM : Aτ −−−−→ AM.τ .

Hence, Vg(C) ' Γ\Ug and the following diagram is commutative :

Γ\Ug
∼−−−−→ Vg(C)

π

y π

y
Γ\Hg

∼−−−−→ Ag(C)

As in [17, p. 141], let

ζ =
dq1

q1
∧ · · · ∧ dqg

qg
= (2iπ)gdz1 ∧ · · · ∧ dzg ∈ Γ(Hg,ω)

with (zi, . . . , zg) ∈ Cg and (qi, . . . , qg) = (e2iπz1 , . . . e2iπzg). This section of the canonical bundle
is a basis of ω[Aτ ] for all τ ∈ Hg and the relative canonical bundle of Ug/Hg is trivialized by ζ :

ωUg/Hg =
g∧

Ω1
Ug/Hg ' Hg × C · ζ.

The group Γ acts on ωUg/Hg by

M.(τ, ζ) = (M.τ, det j(M, τ) · ζ) if M ∈ Γ,

in such a way that
ϕ∗M (ζM.τ ) = det j(M, τ)−1ζτ .
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Thus, a geometric Siegel modular form f of weight h becomes an expression

f(Aτ ) = f̃(τ) · ζ⊗h,

where f̃ belongs to the well-known vector space Rg,h(C) of analytic Siegel modular forms of
weight h on Hg, consisting of complex holomorphic functions φ(τ) on Hg satisfying

φ(M.τ) = det j(M.τ)hφ(τ)

for any M ∈ Sp2g(Z). Note that by Koecher principle [20, p. 11], the condition of holomorphy
at ∞ is automatically satisfied since g > 1. The converse is also true [17, p. 141] :

Proposition 6.2.1. If f ∈ Sg,h(C) and τ ∈ Hg, let

f̃(τ) = f(Aτ )/ζ⊗h = (2iπ)−ghf(Aτ )/(dz1 ∧ · · · ∧ dzg)⊗h.

Then the map f 7→ f̃ is an isomorphism Sg,h(C) ∼−→Rg,h(C).

6.2.3 Teichmüller modular forms

Let g > 1 and n > 0 be positive integers and let Mg,n denote the moduli stack of smooth
and proper curves of genus g with symplectic level n structure [11]. Let π : Cg,n −→ Mg,n be
the universal curve, and let λ be the invertible sheaf associated to the Hodge bundle, namely

λ =
g∧
π∗Ω1

Cg,n/Mg,n
.

For an algebraically closed field k the fibre over C ∈ Mg,n(k) is the one dimensional vector space
λ[C] =

∧g Ω1
k[C].

Let R be a commutative ring and h a positive integer. A Teichmüller modular form of genus
g and weight h over R is an element of

Tg,h(R) = Γ(Mg ⊗R,λ⊗h).

These forms have been thoroughly studied by Ichikawa [35], [36], [37], [38]. As in the case of the
moduli space of abelian varieties, for any n ≥ 1 we have

Mg ' Mg,n/Sp2g(Z/nZ),

and Mg,n can be represented by a smooth scheme over Z[ζn, 1/n] if n ≥ 3. Then, for any algebra
R over Z[ζn, 1/n], the module Tg,h(R) is the submodule of

Γ(Mg,n ⊗Z[ζn,1/n] R,λ
⊗h)

invariant under Sp2g(Z/nZ).
Let C/k be a genus g curve. Let λ1, . . . , λg be a basis of Ω1

k[C] and λ = λ1 ∧ · · · ∧ λg a basis
of λ[C]. As for Siegel modular forms in (6.1), for a Teichmüller modular form f ∈ Tg,h(k) we
define

f(C, λ) = f(C)/λ⊗h ∈ k.
Ichikawa asserts the following proposition :

Proposition 6.2.2. The Torelli map t : Mg −→ Ag, associating to a curve C its Jacobian JacC
with the canonical polarization j, satisfies t∗ω = λ, and induces for any commutative ring R a
linear map

t∗ : Sg,h(R) = Γ(Ag ⊗R,ω⊗h) −−−−→ Tg,h(R) = Γ(Mg ⊗R,λ⊗h),

such that [t∗f ](C) = t∗[f(JacC)]. Fixing a basis λ of λ[C], this is

f(JacC,ω) = [t∗f ](C, λ) if t∗ω = λ.
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6.2.4 Action of isomorphisms

Suppose φ : (A′, a′) −→ (A, a) is a k-isomorphism of principally polarized abelian varieties.
Let ω1, . . . , ωg ∈ Ω1

k[A] and ω = ω1 ∧ · · · ∧ ωg ∈ ω[A]. Then by definition

f(A,ω) = f(A′, γ)

where γi = φ∗(ωi) is a basis of Ω1
k[A
′] and γ = γ1 ∧ · · · ∧ γg ∈ ω[A′]. If ω′1, . . . , ω

′
g is another

basis of Ω1
k[A
′] and ω′ = ω′1 ∧ · · · ∧ ω′g, we denote by Mφ ∈ GLg(k) the matrix of the basis (γi)

in the basis (ω′i). We can easily see that

Proposition 6.2.3. In the above notation,

f(A,ω) = det(Mφ)h · f(A′, ω′).

First of all, from this formula applied to the action of −1, we deduce that, if k is a field of
characteristic different from 2, then Sg,h(k) = {0} if gh is odd. From now on we assume that
gh is even and char k 6= 2.

Corollary 6.2.4. Let (A, a) be a principally polarized abelian variety of dimension g defined
over k and f ∈ Sg,h(k). Let ω1, . . . , ωg be a basis of Ω1

k[A], and let ω = ω1 ∧ · · · ∧ ωg ∈ ω[A].
Then the quantity

f̄(A) = f(A,ω) mod× k×h ∈ k/k×h

does not depend on the choice of the basis of Ω1
k[A]. In particular f̄(A) is an invariant of the

k-isomorphism class of A.

Corollary 6.2.5. Assume that g is odd. Let f ∈ Sg,h(k) and φ : A′ −→ A a non trivial quadratic
twist. There exists c ∈ k \ k2 such that f̄(A) = ch/2f̄(A′). Thus, if f̄(A) 6= 0 then f̄(A) and
f̄(A′) do not belong to the same class in k×/k×h.

Proof. Assume that φ is given by the quadratic character ε of Gal(k/k). Then

dσ = ε(σ)g · d, where d = det(Mφ) ∈ k, σ ∈ Gal(k/k).

Assume that g is odd. Then by our assumption h is even, and d2 = ε(σ)ddσ ∈ k. But d /∈ k
since there exists σ such that ε(σ) = −1. Using Prop.6.2.3 we find that

f(A,ω) = (d2)h/2f(A′, ω′).

Since d2 is not a square in k, if f̄(A) 6= 0 then f̄(A) and f̄(A′) belong to two different classes.

Let now (A, a) be a principally polarized abelian variety of dimension g defined over C. Let
ω1, . . . , ωg be a basis of Ω1

C[A] and ω = ω1∧ · · ·∧ωg ∈ ω[A]. Let γ1, . . . γ2g be a symplectic basis
(for the polarization a). The period matrix

Ω = [Ω1 Ω2] =


∫
γ1
ω1 · · ·

∫
γ2g

ω1

...
...∫

γ1
ωg · · ·

∫
γ2g

ωg


belongs to the set Rg ⊂Mg,2g(C) of period matrices, and τ = Ω−1

2 Ω1 ∈ Hg.

Proposition 6.2.6. In the above notation,

f(A,ω) = (2iπ)gh
f̃(τ)

det Ωh
2

.
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Proof. The abelian variety A is isomorphic to AΩ = Cg/ΩZ2g and ω ∈ ω[A] maps to ξ =
dz1 ∧ · · · ∧ dzg ∈ ω[AΩ] under this isomorphism. The linear map z 7→ Ω−1

2 z = z′ induces the
isomorphism

ϕ : AΩ −−−−→ Aτ = Cg/(Zg + τZg).

Let us denote ξ′ = dz′1 ∧ · · · ∧ dz′g = (2iπ)−gζ in ω[Aτ ]. Thus, using Prop.6.2.3, Equation (6.1)
and Prop.6.2.1, we obtain

f(A,ω) = f(AΩ, ξ) = det Ω−h2 f(Aτ , ξ′)

= det Ω−h2 f(Aτ )/ξ′⊗h = (2iπ)gh det Ω−h2 f(τ)/ζ⊗h = (2iπ)gh
f̃(τ)

det Ωh
2

,

from which the proposition follows.

6.3 Invariants and modular forms

Let d > 0 be an integer and in this section k is an algebraically closed field of characteristic
coprime with d.

6.3.1 Invariants

We review some classical invariant theory. Let E be a vector space of dimension n over k.
The left regular representation r of GL(E) on the vector space Xd = Symd(E∗) of homogeneous
polynomials of degree d on E is given by

r(u) : F (x) 7→ (u · F )(x) = F (ux)

for u ∈ GL(E), F ∈ Xd and x ∈ E. If U is an open subset of Xd stable under r, we still denote
by r the left regular representation of GL(E) on the k-algebra O(U) of regular functions on U ,
in such a way that

r(u) : Φ(F ) 7→ (u · Φ)(F ) = Φ(u · F ),

if u ∈ GL(E), Φ ∈ O(U) and F ∈ U . If h ∈ Z, we denote by Oh(U) the subspace of homogeneous
elements of degree h, satisfying Φ(λF ) = λhΦ(F ) for λ ∈ k× and F ∈ U . The subspaces Oh(U)
are stable under r. An element Φ ∈ Oh(U) is an invariant of degree h on U if

u · Φ = Φ for every u ∈ SL(E),

and we denote by Invh(U) the subspace ofOh(U) of invariants of degree h on U . If Invh(U) 6= {0},
then hd ≡ 0(modn), since the group µn of n-th roots of unity is in the kernel of r. Hence, if
Φ ∈ O(U), and if w and n are two integers such that hd = nw, the following statements are
equivalent :

1. Φ ∈ Invh(U) ;

2. u · Φ = (detu)wΦ for every u ∈ GL(E).

If these conditions are satisfied, we call w the weight of Φ.
The multivariate resultant Res(f1, . . . , fn) of n forms f1, . . . fn in n variables with coefficients

in k is an irreducible polynomial in the coefficients of f1, . . . fn which vanishes whenever f1, . . . fn
have a common non-zero root. One requires that the resultant is irreducible over Z, i. e. it has
coefficients in Z with greatest common divisor equal to 1, and moreover

Res(xd11 , . . . , x
dn
n ) = 1
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for any (d1, . . . , dn) ∈ Nn. The multivariate resultant exists and is unique. Now, let F ∈ Xd, and
denote q1, . . . , qn the partial derivatives of F . The discriminant of F is

DiscF = c−1
n,d Res(q1, . . . , qn), with cn,d = d((d−1)n−(−1)n)/d,

the coefficient cn,d being chosen according to [75]. Hence, the projective hypersurface which
is the zero locus of F ∈ Xd is nonsingular if and only if DiscF 6= 0. The discriminant is an
irreducible polynomial in the coefficients of F , see for instance [21, Chap. 9, Ex. 1.6(a)]. From
now on we restrict ourselves to the case n = 3, i. e. we consider invariants of ternary forms of
degree d, and summarize the results that we shall need.

Proposition 6.3.1. If F ∈ Xd is a ternary form, the discriminant

DiscF = d−(d−1)(d−2)−1 · Res(q1, q2, q3)

where q1, q2, q3 are the partial derivatives of F , is given by an irreducible polynomial over Z in
the coefficients of F , and vanishes if and only if the plane curve CF defined by F is singular.
The discriminant is an invariant of Xd of degree 3(d− 1)2 and weight d(d− 1)2.

We refer to [21, p. 118] and [50] for an explicit formula for the discriminant, found by
Sylvester.

Example 6.3.1 (Ciani quartics). We recall some results whose proofs are given in [50]. Let

m =

a1 b3 b2
b3 a2 b1
b2 b1 a3

 ∈ Sym3(k),

and for 1 ≤ i ≤ 3, let ci = ajak − b2i be the cofactor of ai. If

det(m) 6= 0, a1a2a3 6= 0 and c1c2c3 6= 0

then
Fm(x, y, z) = a1x

4 + a2y
4 + a3z

4 + 2(b1y2z2 + b2x
2z2 + b3x

2y2)

defines a non singular plane quartic. Moreover

DiscFm = 240 a1 a2 a3 (c1 c2 c3)2 det(m)4.

Note that the discrepancy between the powers of 2 here and in [50, Prop.2.2.1] comes from the
normalization by cn,d.

6.3.2 Geometric invariants for plane curves

Let E be a vector space of dimension 3 over k and G = GL(E). The universal curve over
the affine space Xd = Symd(E) is the variety

Yd =
{

(F, x) ∈ Xd × P2 | F (x) = 0
}
.

The nonsingular locus of Xd is the principal open set

X0
d = (Xd)Disc = {F ∈ Xd | Disc(F ) 6= 0} .

If Y0
d is the universal curve over the nonsingular locus X0

d, the projection is a smooth surjec-
tive k-morphism

π : Y0
d −−−−→ X0

d
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whose fibre over F is the non singular plane curve CF .
We recall the classical way to write down an explicit k-basis of Ω1[CF ] = H0(CF ,Ω1) for

F ∈ X0
d(k) (see [6, p. 630]). Let

η1 =
f(x2dx3 − x3dx2)

q1
, η2 =

f(x3dx1 − x1dx3)
q2

, η3 =
f(x1dx2 − x2dx1)

q3
,

where q1, q2, q3 are the partial derivatives of F , and where f belongs to the space Xd−3 of
ternary forms of degree d− 3. The forms ηi glue together and define a regular differential form
ηf (F ) ∈ Ω1[CF ]. Since dim Xd−3 = (d− 1)(d− 2)/2 = g, the linear map f 7→ ηf (F ) defines an
isomorphism

Xd−3
∼−−−−→ Ω1[CF ].

This implies that the sections ηf ∈ Γ(X0
d, π∗Ω

1
Y0
d/X

0
d
) lead to a trivialization

X0
d × Xd−3

∼−−−−→ π∗Ω1
Y0
d/X

0
d
.

We denote η1, . . . , ηg the sequence of sections obtained by substituting for f in ηf the g members
of the canonical basis of Xd−3, enumerated according to the lexicographic order. Then

η = η1 ∧ · · · ∧ ηg

is a section of

α =
g∧
π∗Ω1

Y0
d/X

0
d
,

the Hodge bundle of the universal curve over X0
d.

Since the map u : x 7→ ux induces an isomorphism

u : Cu·F
∼−−−−→ CF

it has a natural action u∗ : Ω1[CF ]→ Ω1[Cu·F ] on the differentials and hence, on the sections of
αh, for h ∈ Z. More specifically, if s ∈ Γ(X0

d,α
⊗h), one can write s = Φ · η⊗h with Φ ∈ O(X0

d) ;
for F ∈ X0

d, one has
u∗s(F ) = Φ(F ) · (u∗η(F ))⊗h.

Lemma 6.3.2. The section η ∈ Γ(X0
d,α) satisfies for u ∈ G and F ∈ X0

d

u∗η(F ) = det(u)w0 · η(u · F ), with w0 =
(
d

3

)
=
dg

3
∈ N.

Proof. Since dimα[F ] = dimα[u · F ] = 1, there is c(u, F ) ∈ k× such that

u∗η(F ) = c(u, F ) · η(u · F ).

and c is a “crossed character”, satisfying

c(uu′, F ) = c(u, F ) c(u′, u · F ).

Now the regular function F 7→ c(u, F ) does not vanishes on X0
d. By Lemma 6.3.3 below and the

irreducibility of the discriminant (Prop. 6.3.1), we have

c(u, F ) = χ(u)(DiscF )n(u)

with χ(u) ∈ k× and n(u) ∈ Z. The group G being connected, the function n(u) = n is constant.
Since c(I3, F ) = 1, we have (DiscF )n = χ(I3)−1, and this implies n = 0. Hence, c(u, F ) is
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independent of F and χ is a character of G. Since the group of commutators of G is SL3(k), we
have

χ(u) = det(u)w0

for some w0 ∈ Z. It is therefore enough to compute χ(u) when u = λI3, with λ ∈ k×. In this
case u ·F = λdF . Moreover, for all f ∈ Xd−3, since the section ηf is homogeneous of degree −1

ηf (λdF ) = λ−d · ηf (F ), and η(λdF ) = λ−dg · η(F ).

Hence, as u is the identity on the curve CF = Cu·F ,

u∗η(F ) = η(F ) = λdg · η(u · F ) = det(u)w0 · η(u · F ).

This implies
det(u)w0 = λ3w0 = λdg,

and the result is proven.

We made use of the following elementary lemma :

Lemma 6.3.3. Let f ∈ k[T1, . . . , Tn] be irreducible and let g ∈ k(T1, . . . , Tn) be a rational
function which has neither zeroes nor poles outside the set of zeroes of f. Then there is an
m ∈ Z and c ∈ k× such that g = cfm.

Proof. This is an immediate consequence of Hilbert’s Nullstellensatz, together with the fact
that the ring k[T1, . . . , Tn] is factorial.

For any h ∈ Z, we denote by Γ(X0
d,α

⊗h)G the subspace of sections s ∈ Γ(X0
d,α

⊗h) such that

u∗s(F ) = s(u · F ) for every u ∈ G,F ∈ X0
d.

Proposition 6.3.4. Let h ≥ 0 be an integer. The linear map

Φ 7→ ρ(Φ) = Φ · η⊗h

is an isomorphism

ρ : Invgh(X0
d)

∼−−−−→ Γ(X0
d,α

⊗h)G.

Proof. Let Φ ∈ Invgh(X0
d), s = ρ(Φ) = Φ · η⊗h, and w = dgh/3, the weight of Φ. Then using

Lem.6.3.2,

u∗s(F ) = Φ(F ) · (u∗η(F ))⊗h

= Φ(F ) · det(u)w0h · η(u · F )⊗h

= det(u)wΦ(F ) · η(u · F )⊗h

= Φ(u · F ) · η(u · F )⊗h = s(u · F ).

Hence, ρ(Φ) ∈ Γ(X0
d,λ

⊗h)G. Conversely, the inverse of ρ is the map s 7→ s/η⊗h, and this proves
the proposition.
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6.3.3 Modular forms as invariants

Let d > 2 be an integer and g =
(
d
2

)
. Since the fibres of Y0

d −→ X0
d are nonsingular non

hyperelliptic plane curves of genus g, by the universal property of Mg we get a morphism

p : X0
g −−−−→ M0

g,

where M0
g is the moduli stack of nonhyperelliptic curves of genus g and p∗λ = α by construction.

This induces a morphism

p∗ : Γ(M0
g,λ

⊗h) −−−−→ Γ(X0
d,α

⊗h).

Moreover, for u ∈ G, since u : Cu·F → CF is an isomorphism, we get the following commutative
diagram

λ[CF ] u∗−−−−→ λ[Cu·F ]

p∗
y p∗

y
α[F ] u∗−−−−→ α[u · F ].

For any f ∈ Γ(M0
g,λ

⊗h), the modular invariance of f means that

u∗f(CF ) = f(Cu·F ).

Then
u∗[(p∗f)(F )] = u∗[p∗(f(CF ))] = p∗[u∗f(CF )] = p∗[f(Cu·F )] = (p∗f)(u · F ),

and this means that p∗f ∈ Γ(X0
d,α

⊗h)G. Combining this result with Prop.6.3.4, we obtain :

Proposition 6.3.5. For any integer h ≥ 0, the linear map σ = ρ−1 ◦ p∗ is a homomorphism :

Γ(M0
g,λ

⊗h) −−−−→ Invgh(X0
d)

such that
σ(f)(F ) = f(CF , λ)

with λ = (p∗)−1η, for any F ∈ X0
d and any section f ∈ Γ(M0

g,λ
⊗h).

We finally make a link between invariants and analytic Siegel modular forms. Let F ∈ X0
d(C)

and let η1, . . . , ηg be the basis of regular differentials on CF defined in Sec.6.3.2. Let γ1, . . . γ2g

be a symplectic basis of H1(C,Z) (for the intersection pairing). The matrix

Ω = [Ω1 Ω2] =


∫
γ1
η1 · · ·

∫
γ2g

η1

...
...∫

γ1
ηg · · ·

∫
γ2g

ηg


belongs to the set Rg ⊂Mg,2g(C) of Riemann matrices, and τ = Ω−1

2 Ω1 ∈ Hg.

Corollary 6.3.6. Let f ∈ Sg,h(C) be a geometric Siegel modular form, f̃ ∈ Rg,h(C) the cor-
responding analytic modular form, and Φ = σ(t∗f) the corresponding invariant. In the above
notation,

Φ(F ) = (2iπ)gh
f̃(τ)

det Ωh
2

.
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Proof. Let λ = (p∗)−1(η) and ω = (t∗)−1(λ). From Prop.6.2.2 and 6.3.5, we deduce

Φ(F ) = (t∗f)(CF , λ) = f(JacCF , ω).

On the other hand, by the canonical identifications

Ω1[CF ] = Ω1[JacCF ], H1(CF ,Z) = H1(JacCF ,Z)

and Prop.6.2.6 we get

f(JacCF , ω) = (2iπ)gh
f̃(τ)

det Ωh
2

,

from which the result follows.

6.4 The case of genus 3

6.4.1 Klein’s formula

We recall the definition of theta functions with (entire) characteristics

[ε] =
[
ε1

ε2

]
∈ Zg ⊕ Zg,

following [5]. The (classical) theta function is given, for τ ∈ Hg and z ∈ Cg, by

θ

[
ε1

ε2

]
(z, τ) =

∑
n∈Zg

q(n+ε1/2)τ(n+ε1/2)+2(n+ε1/2)(z+ε2/2).

The Thetanullwerte are the values at z = 0 of these functions, and we write

θ[ε](τ) = θ

[
ε1

ε2

]
(τ) = θ

[
ε1

ε2

]
(0, τ).

Recall that a characteristic is even if ε1 · ε2 ≡ 0 (mod 2) and odd otherwise. Let Sg be the set
of even characteristics with coefficients in {0, 1}. For g ≥ 2, we put h = |Sg|/2 = 2g−2(2g + 1)
and

χ̃h(τ) =
∏

ε∈Sg

θ[ε](τ).

In his beautiful paper [39], Igusa proves the following result [loc. cit., Lem. 10 and 11].
Denote by Σ̃140 the modular form defined by the thirty-fifth elementary symmetric function
of the eighth power of the even Thetanullwerte. Recall that a principally polarized abelian
variety (A, a) is decomposable if it is a product of principally polarized abelian varieties of
lower dimension, and indecomposable otherwise.

Theorem 6.4.1. If g ≥ 3, then χ̃h(τ) ∈ Rg,h(C). Moreover, If g = 3 and τ ∈ H3, then :

1. Aτ is decomposable if χ̃18(τ) = Σ̃140(τ) = 0.

2. Aτ is a hyperelliptic Jacobian if χ̃18(τ) = 0 and Σ̃140(τ) 6= 0.

3. Aτ is a non hyperelliptic Jacobian if χ̃18(τ) 6= 0.
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Using Prop. 6.2.1, we define the geometric Siegel modular form of weight h

χh(Aτ ) = (2iπ)gh χ̃h(τ)(dz1 ∧ · · · ∧ dzg)⊗h.

Ichikawa [37], [38] proved that χh ∈ Sg,h(Q). For g = 3, one finds

χ18(Aτ ) = −(2π)54 χ̃18(τ)(dz1 ∧ dz2 ∧ dz3)⊗18.

Now we are ready to give a proof of the following result [47, Eq. 118, p. 462] :

Theorem 6.4.2 (Klein’s formula). Let F ∈ X0
4(C) and CF be the corresponding smooth plane

quartic. Let η1, η2, η3 be the classical basis of Ω1[CF ] from Sec.6.3.2 and γ1, . . . γ6 be a symplectic
basis of H1(CF ,Z) for the intersection pairing. Let

Ω = [Ω1 Ω2] =


∫
γ1
η1 · · ·

∫
γ6
η1

...
...∫

γ1
η3 · · ·

∫
γ6
η3


be a period matrix of Jac(C) and τ = Ω−1

2 Ω1 ∈ H3. Then

Disc(F )2 =
1

228
(2π)54 χ̃18(τ)

det(Ω2)18
.

Proof. Cor.6.3.6 shows that for any F ∈ X0
4 the invariant I = σ ◦ t∗(χ18) satisfies

I(F ) = −(2π)54 χ̃18(τ)
det Ω18

2

.

Moreover Th. 6.4.1(3) shows that I(F ) 6= 0 for all F ∈ X0
4. Thus I is a non-zero invariant

of weight 54. Applying Lem. 6.3.3 for the discriminant, we find by comparison of the weights
that I = cDisc2 with c ∈ C a constant. But if Fm is the Ciani quartic associated to a matrix
m ∈ Sym3(k) as in Example 6.3.1, it is proven in [50, Cor. 4.2] that Klein’s formula is true for
Fm and c = −228.

Remark 6.4.1. The morphism t∗ defines an injective morphism of graded k-algebras

S3(k) = ⊕h≥0S3,h(k) −−−−→ T3(k) = ⊕h≥0T3,h(k).

In [36], Ichikawa proves that if k is a field of characteristic 0, then T3(k) is generated by the
image of S3(k) and a primitive Teichmüller form µ3,9 ∈ T3,9(Z) of weight 9, which is not of
Siegel modular type. He also proves in [38] that

t∗(χ18) = −228 · (µ3,9)2. (6.2)

Th. 6.4.2 implies that µ3,9 is actually equal to the discriminant up to a sign. This might
probably be deduced from the definition of µ3,9, although it seems that this fact was not observed
before (see also [44, Sec. 2.4]).

Remark 6.4.2. Besides [58] and [26] where an analogue of Klein’s formula is derived in the
hyperelliptic case, there exists a beautiful algebraic Klein’s formula for genus 3 curves, linking
the discriminant with irrational invariants [22, Th.11.1].
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6.4.2 Jacobians among abelian threefolds

Let k ⊂ C be a field and let g = 3. We prove the following theorem which allows us to
determine whether a given abelian threefold defined over k is k-isomorphic to a Jacobian of a
curve defined over the same field. This settles the question of Serre recalled in the introduction.

Theorem 6.4.3. Let (A, a) be a principally polarized abelian threefold defined over k ⊂ C.
Let ω1, ω2, ω3 be any basis of Ω1

k[A] and γ1, . . . γ6 a symplectic basis (for the polarization a) of
H1(A,Z), in such a way that

Ω = [Ω1 Ω2] =


∫
γ1
ω1 · · ·

∫
γ6
ω1

...
...∫

γ1
ω3 · · ·

∫
γ6
ω3


is a period matrix of (A, a). Put τ = Ω−1

2 Ω1 ∈ H3.

1. If Σ̃140(τ) = 0 and χ̃18(τ) = 0 then (A, a) is decomposable over k̄. In particular it is not
a Jacobian.

2. If Σ̃140(τ) 6= 0 and χ̃18(τ) = 0 then there exists a hyperelliptic curve X/k such that
(JacX, j) ' (A, a).

3. If χ̃18(τ) 6= 0 then (A, a) is isomorphic to a Jacobian if and only if

−χ18(A,ω1 ∧ ω2 ∧ ω3) = (2π)54 χ̃18(τ)
det(Ω2)18

is a square in k.

Proof. The first and second points follow from Th.6.4.1 and Th.6.1.1. Suppose now that (A, a) is
isomorphic over k to the Jacobian of a non hyperelliptic genus 3 curve C/k. Let ω = ω1∧ω2∧ω3

Using Prop.6.2.2, we get
−χ18(A,ω) = t∗(−χ18)(C, λ)

with λ = t∗ω. The left hand side is (Prop.6.2.6)

−χ18(A,ω) = −(2iπ)54 χ̃18(τ)
det(Ω2)18

= (2π)54 χ̃18(τ)
det(Ω2)18

.

According to Rem.6.4.1, the right hand side of the equality is

t∗(−χ18)(C, λ) = 228 · µ2
3,9(C, λ) = (214 · µ3,9(C, λ))2

so the desired expression is a square in k. On the contrary, Cor.6.2.5 shows that if (A, a) is a
quadratic twist of a Jacobian (A′, a′) then there exists a non square c ∈ k such that

−χ̄18(A) = c9 · (−χ̄18(A′)).

As we have just proved that −χ̄18(A′) is a non-zero square in k/k×18 so −χ18(A,ω) is not.

Corollary 6.4.4. In the notation of Th.6.4.3, the quadratic character ε of Gal(ksep/k) intro-
duced in Theorem 6.1.1 is given by ε(σ) = d/dσ, where

d =

√
(2π)54

χ̃18(τ)
det(Ω2)18

,

with an arbitrary choice of the square root.
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6.4.3 Beyond genus 3

It is natural to try to extend our results to the case g > 3. The first question to ask is
– Does there exist an analogue of Klein’s formula for g > 3 ?
Here we can give a partial answer. Using Sec.6.2.3, we can consider the Teichmüller modular

form t∗(χh) with h = 2g−2(2g + 1). In [38, Prop.4.5] (see also [84]), it is proven that for g > 3
the element

t∗(χh)/22g−1(2g−1)

has as a square root a primitive element µg,h/2 ∈ Tg,h/2(Z). If g = 4, in the footnote, p. 462
in [47] we find the following amazing formula

χ̃68(τ)
det(Ω2)68

= c ·∆(X)2 · T (X)8. (6.3)

Here τ = Ω−1
2 Ω1, with Ω = [Ω1 Ω2] a period matrix of a genus 4 non hyperelliptic curve X

given in P3 as an intersection of a quadric Q and a cubic surface E. The elements ∆(X) and
T (X) are defined in the classical invariant theory as, respectively, the discriminant of Q and
the tact invariant of Q and E (see [71, p.122]). Unfortuantely, no proof of this formula is given
in [47], so the problem appears to deserve further study. No such formula seems to be known in
the non hyperelliptic case for g > 4.

Let us now look at what happens when we try to apply Serre’s approach for g > 3. To
begin with, when g is even, we cannot use Cor.6.2.4 to distinguish between quadratic twists. In
particular, using the previous result, we see that χh(A,ωk) is a square when A is a principally
polarized abelian variety defined over k which is geometrically a Jacobian. A natural question
is :

– What is the relation between this condition and the locus of geometric Jacobians over k ?
Let us assume now that g is odd. Corollary 6.2.5 shows that there exists c ∈ k \k2 such that

χh(A′) = ch/2 · χh(A)

for a Jacobian A and a quadratic twist A′. What enabled us to distinguish between A and A′

when g = 3 is that h/2 = 9 is odd. However as soon as g > 3, 2 | 2g−3, the power g − 3 being
the maximal power of 2 dividing h/2, so it is not enough for χ̄18(A) to be a square in k to
make a distinction between A and A′. It must rather be an element of k2g−2

. It can be easily
seen from the proof of [84, Th.1] that t∗(χh) does not admit a fourth root. This implies1 that
χh(A) /∈ k2g−2

for infinitely many Jacobians A defined over number fields k. So we can no longer
use the modular form χh to characterize Jacobians over k. The question is :

– Is it possible to find a modular form to replace χh in our strategy when g > 3 ?

1Personal communication by Y. F. Bilu and X. Xarles
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Compositio Math. 58 (1986), no. 2, 209–232.
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RESUME en français

Deux parties principales constituent le sujet de cette thèse. La première partie est consacrée
à l’étude des propriétés asymptotiques des fonctions zêta, des fonctions L, des corps globaux
et des variétés sur ces corps. Dans le premier chapitre, nous démontrons une généralisation du
théorème de Brauer–Siegel au cas des suites de corps presque normaux. Dans le deuxième cha-
pitre, nous étudions le comportement asymptotique des dérivées logarithmiques des fonctions
zêta dans des familles de corps globaux. Dans le troisième chapitre, nous donnons un pano-
rama des généralisations du théorème de Brauer–Siegel classique. Dans le même chapitre nous
démontrons une version du théorème de Brauer–Siegel pour les variétés sur les corps finis. Le
quatrième chapitre est consacré à l’étude de la distribution des zéros des fonctions L des formes
modulaires. Dans le cinquième chapitre, nous étudions des propriétés asymptotiques des familles
de fonctions zêta et de fonctions L sur les corps finis dans le contexte des trois problèmes sui-
vants : l’inégalité principale, les résultats de type Brauer–Siegel et la distribution des zéros. Le
but de la deuxième partie est d’obtenir une caractérisation des jacobiennes parmi les variétés
abéliennes principalement polarisées de dimension 3, ce qui fournit une réponse à une question
de J.-P. Serre. Nous obtenons aussi une nouvelle démonstration de la formule de Klein qui relie
une certaine forme modulaire de Siegel au discriminant des quartiques planes.

TITRE en anglais

Asymptotic properties of global fields

RESUME en anglais

There are two main parts in this thesis. The first part is devoted to the study of asymptotic
properties of zeta functions, L-functions, global fields and varieties over these fields. In the
first chapter, we prove a generalization of the Brauer–Siegel theorem to the case of families of
almost normal number fields. In the second chapter, we study the asymptotic behaviour of the
logarithmic derivatives of zeta functions in families of global fields. In the third, chapter we
give an overview of possible generalizations of the classical Brauer–Siegel theorem. In the same
chapter, we prove a version of the Brauer–Siegel theorem for varieties over finite fields. The
fourth chapter is devoted to the study of the distribution of zeroes of L-functions of modular
forms. In the fifth chapter, we study the asymptotic properties of families of zeta and L-functions
over finite fields in the context of the following problems : the basic inequality, the results of
the Brauer–Siegel type and the distribution of zeroes. The aim of the second part is to obtain
a characterization of Jacobians among principally polarized abelian varieties of dimension 3,
which gives an answer to a question asked by J.-P. Serre. We also obtain a new proof of Klein’s
formula which connects a certain Siegel modular form to the discriminant of plane quartics.
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