Constructing irreducible polynomials using isogenies

Gaetan Bisson

COUNT Conference Luminy, 1st March 2023

Abstract

Let *S* be a rational fraction and let *f* be a polynomial over a finite field. Consider the transform T(f) = numerator(f(S)). In certain cases, the polynomials *f*, T(f), T(T(f))... are all irreducible. For instance, in odd characteristic, this is the case for the rational fraction $S = (x^2 + 1)/(2x)$, known as the *R*-transform, and for a positive density of all irreducible polynomials *f*.

We interpret these transforms in terms of isogenies of elliptic curves. Using complex multiplication theory, we devise algorithms to generate a large number of other rational fractions S, each of which yields infinite families of irreducible polynomials for a positive density of starting irreducible polynomials f.

This is joint work with Alp Bassa and Roger Oyono.

1 Iterated presentations

For a rational fraction $S \in \mathbb{Q}(x)$ and a finite field k where it has good reduction, consider

$$T_{S}: \begin{cases} k[x] \longrightarrow k[x] \\ f(x) \longmapsto \operatorname{numerator}(f(S(x))). \end{cases}$$

Take for instance $Q(x) = (x^2 + 1)/x$ and $k = \mathbb{F}_2$; we have

$$\begin{split} f(x) &= x^2 + x + 1, \\ T_Q(f)(x) &= x^4 + x^3 + x^2 + x + 1, \\ T_Q^2(f)(x) &= x^8 + x^7 + x^6 + x^4 + x^2 + x + 1, \\ T_Q^3(f)(x) &= x^{16} + x^{15} + x^{14} + x^{13} + x^{12} + x^{11} + x^8 + x^5 + x^4 + x^3 + x^2 + x + 1, \end{split}$$

and so on; observe that all the polynomials $T_Q^i(f)$ are irreducible. When such is the case, we say that they induce an *iterated presentation* of the field

$$k^{\left[d\,e^{\,\infty}\right]} = \bigcup_{i=0}^{\infty} k^{\left[d\,e^{i}\right]}$$

where $d = \deg(f)$, $e = \deg(S)$, and $k^{[\ell]}$ denotes the degree- ℓ extension of the finite field k.

2 Prior work

Two classical results concern the so-called Q and R-transform:

$$Q(x) = \frac{x^2 + 1}{x}, \qquad R(x) = \frac{x^2 + 1}{2x}.$$

Theorem 2.1 (Varshamov 1984, Meyn 1990, Kyuregyan 2002). Let k/\mathbb{F}_2 be a finite field and let $f \in k[x]$ be a monic irreducible polynomial with coefficients $(a_\ell)_{\ell=0}^n$. Assume $\operatorname{tr}(a_{n-1}) = \operatorname{tr}(a_1/a_0) = 1$. Then (Q, f) induces an iterated presentation.

Theorem 2.2 (Cohen 1992). Let k be a finite field of odd characteristic and let $f \in k[x]$ be a monic irreducible polynomial. Assume f(1)f(-1) is not a square. If $|k| = 3 \mod 4$, assume furthermore that deg(f) is even. Then (R, f) induces an iterated presentation.

More recent work:

- Kyuregyan 2003, 2006: exhaustive study of degree-two rational fractions;
- Bassa-Menares 2019, 2023: interpretation via Galois theory of function fields.

3 Exploiting isogenies

Take:

- $\varphi: \mathscr{E}_0 \leftarrow \mathscr{E}_1$ a separable isogeny over k between elliptic curves in Weierstrass form;
- *S* its action on the *x*-coordinate;
- *P* a point in $\mathscr{E}_0(\overline{k})$;
- f the minimal polynomial of its *x*-coordinate x_p .

For any point $Q \in \varphi^{-1}(P)$, we have $x_P = S(x_Q)$; since $f(S(x_Q)) = 0$, the polynomial $T_S(f)$ is minimal for x_Q , and therefore is irreducible, as soon as it has the expected degree, that is, $\lfloor k(x_Q) : k(x_P) \rfloor = \deg \varphi$.

This holds assuming $[k(Q): k(P)] = \deg \varphi$ and either $\deg \varphi$ odd or $[k(P): k(x_P)] = 2$. We wish to iterate this.

Theorem 3.1. Let $\mathscr{E}_0 \stackrel{\varphi_0}{\leftarrow} \mathscr{E}_1 \stackrel{\varphi_1}{\leftarrow} \mathscr{E}_2$ be two separable isogenies of degree ℓ_0 et ℓ_1 defined over a finite field k. Suppose all prime factors of ℓ_1 divide ℓ_0 . Suppose also that the kernel of their composition $\ker(\varphi_0 \circ \varphi_1)$ is cyclic and that all its points are defined over k(P) for some $P \in \mathscr{E}_0(\overline{k})$. Then, for all points $Q \in (\varphi_0 \circ \varphi_1)^{-1}(P)$ we have

$$[k(\varphi_1(Q)):k(P)] = \ell_0 \quad \Longrightarrow \quad [k(Q):k(P)] = \ell_0 \ell_1.$$

Iterate with $\varphi_0 = \varphi_1$ an endomorphism. If $\deg(\varphi)$ is prime, $\ker(\varphi^2) \operatorname{cyclic} \Leftrightarrow \varphi \neq \widehat{\varphi}$. We look for such φ and ignore associated *P*'s for now.

4 Volcanoes and cycles

We look for a cycle $\varphi : \mathscr{E} \to \mathscr{E}$ in the isogeny graph where no edge is dual to another. Assuming E ordinary and ℓ prime, the ℓ -isogeny graph is a volcano

The only cycle lies at the rim formed by elliptic curves with maximal endomorphism ring locally at ℓ . By CM theory, this is the Cayley graph of the subset of ideals of norm ℓ in the class group of $\mathbb{Q}(\pi)$.

The easiest construction is when this cycle is trivial: fix a finite field k and a prime ℓ ; enumerate small discriminants Δ for which ℓ splits into principal ideals; compute the corresponding elliptic curve and isogeny via CM theory.

Other constructions: prime ideals of order two; principal products of prime ideals; supersingular case. And my favorite: characteristic zero!

Proposition 4.1 (Silverman 1994). There are three isomorphism classes of elliptic curves over \mathbb{Q} which admit a degree-two endomorphism, namely:

(i)
$$E: y^2 = x^3 + x, \qquad j = 1728, \qquad \alpha = 1 + \sqrt{-1},$$

 $[\alpha](x, y) = \left(\alpha^{-2}\left(x + \frac{1}{x}\right), \alpha^{-3}y\left(1 - \frac{1}{x^2}\right)\right);$
(ii) $E: y^2 = x^3 + 4x^2 + 2x, \qquad j = 8000, \qquad \alpha = \sqrt{-2},$
 $[\alpha](x, y) = \left(\alpha^{-2}\left(x + 4 + \frac{2}{x}\right), \alpha^{-3}y\left(1 - \frac{2}{x^2}\right)\right);$
(iii) $E: y^2 = x^3 - 35x + 98, \qquad j = -3375, \qquad \alpha = \frac{1 + \sqrt{-7}}{2},$
 $[\alpha](x, y) = \left(\alpha^{-2}\left(x - \frac{7(1 - \alpha)^4}{x + \alpha^2 - 2}\right), \alpha^{-3}y\left(1 + \frac{7(1 - \alpha)^4}{(x + \alpha^2 - 2)^2}\right)\right)$

Extended to degree three and four by Reitsma 2017.

5 Density of transforms

For each rational fraction S we compute the density of irreducible polynomials f of degree d over the finite field with q elements which induce an iterated presentation. The Chebotarev theorem can be used to prove the asymptotic density of certain columns.

$S = \frac{x^2 + 1}{x}$	<i>d</i> = 2	<i>d</i> = 3	d = 4	<i>d</i> = 5	<i>d</i> = 6
<i>q</i> = 2	1	0	1/3	1/3	2/9
<i>q</i> = 3	2/3	0	5/9	0	15/29
<i>q</i> = 5	0	0	0	0	0
q = 7	8/21	0	12/49	0	≈ 0.25
q = 11	8/55	≈ 0.12	≈ 0.13	≈ 0.12	≈ 0.12
<i>q</i> = 13	2/13	11/91	≈ 0.13	≈ 0.13	≈ 0.13

$S = \frac{1}{2} \frac{x^2}{2}$	$\frac{d^2+1}{x} \mid d=2$	<i>d</i> = 3	d = 4	<i>d</i> = 5	<i>d</i> = 6
\overline{q}	= 3 2/3	0	5/9	0	15/29
q :	= 5 3/5	1/2	13/25	1/2	≈ 0.50
q :	=7 4/7	0	25/49	0	≈ 0.50
q	= 11 6/11	0	≈ 0.50	0	≈ 0.50
q	= 13 7/13	1/2	≈ 0.50	1/2	≈ 0.50
q	= 17 9/17	1/2	≈ 0.50	1/2	≈ 0.50

$S = \alpha^{-2} \left(x + 4 + \frac{2}{x} \right)$	<i>d</i> = 2	<i>d</i> = 3	d = 4	<i>d</i> = 5	<i>d</i> = 6
q = 3	0	1/2	0	1/2	0
q = 11	0	1/2	0	1/2	0
q = 17	0	0	0	0	0
q = 19	0	1/2	0	1/2	0
q = 41	0	0	0	0	0
q = 43	0	1/2	0		

$S = \alpha^{-2} \left(x - \frac{7(1-\alpha)^4}{x+\alpha^2 - 2} \right) \qquad d = 2 \qquad d = 3 \qquad d = 4 \qquad d = 5 \qquad d = 6$ $q = 7 \qquad 1 \qquad 1 \qquad 1 \qquad 1 \qquad 1$
q = 7 1 1 1 1 1
1
$q = 11 16/55 \approx 0.26 \approx 0.26 \approx 0.25 \approx 0.25$
$q = 23$ ≈ 0.25 ≈ 0.25 ≈ 0.25 ≈ 0.25 ≈ 0.25
$q = 29 \qquad 8/29 \qquad \approx 0.25 \qquad \approx 0.25$
$q = 37$ ≈ 0.26 ≈ 0.25 ≈ 0.25
$q = 43 \mid \approx 0.25 \approx 0.25 \approx 0.25$

References

- Alp Bassa, Gaetan Bisson, and Roger Oyono. *Iterative constructions of irreducible polynomials from isogenies*. 2023. arXiv: 2302.09674.
- [2] Alp Bassa and Ricardo Menares. "Galois theory and iterative construction of irreducible polynomials." In: (2022). In preparation.
- [3] Alp Bassa and Ricardo Menares. "The R-transform as a power map and its generalisations to higher degree." In: (2019). URL: https://arxiv.org/abs/1909.02608.
- [4] Stephen D. Cohen. "The explicit construction of irreducible polynomials over finite fields." In: *Designs, Codes and Cryptography* 2 (1992), pages 169–174. DOI: 10.1007/ BF00124895.
- [5] Melsik K. Kyuregyan. "Recurrent methods for constructing irreducible polynomials over \mathbb{F}_q of odd characteristics." In: *Finite Fields and their Applications* 9.1 (2003), pages 39–58. DOI: 10.1016/S1071-5797(02)00005-9.
- [6] Melsik K. Kyuregyan. "Recurrent methods for constructing irreducible polynomials over \mathbb{F}_q of odd characteristics, II." In: *Finite Fields and their Applications* 12.3 (2006), pages 357–378. DOI: 10.1016/j.ffa.2005.07.002.
- [7] Melsik K. Kyuregyan. "Recurrent methods for constructing irreducible polynomials over GF(2^s)." In: *Finite Fields and their Applications* 8.1 (2002), pages 52–68. DOI: 10.1006/ffta.2001.0323.
- [8] Helmut Meyn. "On the construction of irreducible self-reciprocal polynomials over finite fields." In: *Applicable Algebra in Engineering, Communication and Computing* 1.1 (1990), pages 43–53. DOI: 10.1007/BF01810846.
- [9] Berno Reitsma. "Endomorphisms of degree 2, 3 and 4 on elliptic curves." Bachelor's thesis. Rijksuniversiteit Groningen, 2017. URL: https://fse.studenttheses.ub. rug.nl/15691/1/Bsc_Math_2017_Reitsma_B.pdf.
- [10] Joseph Hillel Silverman. Advanced Topics in the Arithmetic of Elliptic Curves. Volume 151. Graduate Texts in Mathematics. Springer, 1994. DOI: 10.1007/978-1-4612-0851-8.
- [11] Rom Rubenovich Varshamov. "A general method of synthesis for irreducible polynomials over Galois fields." In: *Proceedings of the USSR Academy of Sciences* 275.5 (1984), pages 1041–1044. URL: http://mi.mathnet.ru/eng/dan/v275/i5/p1041.