COMPUTING ENDOMORPHISM RINGS OF ABELIAN VARIETIES

Gaetan Bisson

Macquarie University, Sydney, Australia

ECC'11

Gaetan Bisson (Macquarie University) COMPUTING ENDOMORPHISM RINGS ECC'11 1/18

Let $\mathscr H$ be an ordinary hyperelliptic curve of genus g = 1, 2 over $\mathbb F_q.$ Jac($\mathscr{H})$ is a principally polarized abelian variety ($\mathscr{A}, \mathscr{P})$ of dimension $g.$

Let $\mathscr H$ be an ordinary hyperelliptic curve of genus g = 1, 2 over $\mathbb F_q.$ $\text{Jac}(\mathscr{H})$ is a principally polarized abelian variety $(\mathscr{A}, \mathscr{P})$ of dimension $g.$

 $(\mathscr{A}, \mathscr{P})$ and $(\mathscr{A}', \mathscr{P}')$ are isomorphic if and only if \mathscr{H} and \mathscr{H}' are.

 $\mathscr A$ and $\mathscr A'$ are isogenous if and only if π and π' are conjugate.

Let $\mathscr H$ be an ordinary hyperelliptic curve of genus g = 1, 2 over $\mathbb F_q.$ Jac(*H*) is a principally polarized abelian variety (*A* ,*P*) of dimension *g*.

 $(\mathscr{A}, \mathscr{P})$ and $(\mathscr{A}', \mathscr{P}')$ are isomorphic if and only if \mathscr{H} and \mathscr{H}' $(invariants)$

 $\mathscr A$ and $\mathscr A'$ are isogenous if and only if π and π' (point counting)

 $ECC'11$ 2/18

Let $\mathscr H$ be an ordinary hyperelliptic curve of genus g = 1, 2 over $\mathbb F_q.$ Jac(*H*) is a principally polarized abelian variety (*A* ,*P*) of dimension *g*.

 $(\mathscr{A}, \mathscr{P})$ and $(\mathscr{A}', \mathscr{P}')$ are isomorphic if and only if \mathscr{H} and \mathscr{H}' $(invariants)$

 $\mathscr A$ and $\mathscr A'$ are isogenous if and only if π and π' (point counting)

CRYPTO: *computable* isogenies transport the DLP.

Computing an isogeny with isotropic kernel $(\mathbb{Z}/\ell\mathbb{Z})^g$ takes roughly ℓ^{2g} time.

Let $\mathscr H$ be an ordinary hyperelliptic curve of genus g = 1, 2 over $\mathbb F_q.$ Jac(*H*) is a principally polarized abelian variety (*A* ,*P*) of dimension *g*.

 $(\mathscr{A}, \mathscr{P})$ and $(\mathscr{A}', \mathscr{P}')$ are isomorphic if and only if \mathscr{H} and \mathscr{H}' $(invariants)$

 $\mathscr A$ and $\mathscr A'$ are isogenous if and only if π and π' (point counting)

CRYPTO: *computable* isogenies transport the DLP.

Computing an isogeny with isotropic kernel $(\mathbb{Z}/\ell\mathbb{Z})^g$ takes roughly ℓ^{2g} time.

ℓ-isogeny

Let π be the Frobenius endomorphism of $\mathcal A.$

The ring of endomorphisms of $\mathscr A$ contains $\mathbb Z[\pi,\overline{\pi}]$ and is contained in $\mathscr O_{\mathbb{Q}(\pi)}.$

Let π be the Frobenius endomorphism of $\mathscr A.$

The ring of endomorphisms of $\mathscr A$ contains $\mathbb Z[\pi,\overline{\pi}]$ and is contained in $\mathscr O_{\mathbb{Q}(\pi)}.$

If *A → A ′* is an ℓ-isogeny, then *d* divides ℓ ⁴*g−*² where

 $d = \left[\text{End}(\mathcal{A}) + \text{End}(\mathcal{A}') : \text{End}(\mathcal{A}) \cap \text{End}(\mathcal{A}') \right].$

Let π be the Frobenius endomorphism of $\mathscr A.$

The ring of endomorphisms of $\mathscr A$ contains $\mathbb Z[\pi,\overline{\pi}]$ and is contained in $\mathscr O_{\mathbb{Q}(\pi)}.$

If *A → A ′* is an ℓ-isogeny, then *d* divides ℓ ⁴*g−*² where

 $d = \left[\text{End}(\mathcal{A}) + \text{End}(\mathcal{A}') : \text{End}(\mathcal{A}) \cap \text{End}(\mathcal{A}') \right].$

To find an isogeny from $\mathscr A$ to $\mathscr A'$:

– If End(\mathcal{A}) ≠ End(\mathcal{A}'), take a *d*-isogeny, and then...

Let π be the Frobenius endomorphism of $\mathscr A.$

The ring of endomorphisms of $\mathscr A$ contains $\mathbb Z[\pi,\overline{\pi}]$ and is contained in $\mathscr O_{\mathbb Q(\pi)}$.

If *A → A ′* is an ℓ-isogeny, then *d* divides ℓ ⁴*g−*² where

 $d = \left[\text{End}(\mathcal{A}) + \text{End}(\mathcal{A}') : \text{End}(\mathcal{A}) \cap \text{End}(\mathcal{A}') \right].$

To find an isogeny from $\mathscr A$ to $\mathscr A'$:

- If End(\mathcal{A}) ≠ End(\mathcal{A}'), take a *d*-isogeny, and then...
- $-$ If End(\mathcal{A}) = End(\mathcal{A}'), use Pollard's rho (or a quantum computer).

Assume we can test whether $\mathscr{O}\subseteq \mathrm{End}(\mathscr{A})$...

PREVIOUS WORK:

- Kohel's algorithm (*g* = 1)
- Eisenträger–Lauter method
- Wagner's algorithm

PREVIOUS WORK:

- Kohel's algorithm (*g* = 1)
- Eisenträger–Lauter method
- Wagner's algorithm

Exponential worst-case runtime as $d = [\mathscr{O}_{\mathbb{Q}(\pi)} : \mathbb{Z}[\pi, \overline{\pi}]] \approx q^{g^2/2}$.

PREVIOUS WORK:

- Kohel's algorithm (*g* = 1)
- Eisenträger–Lauter method
- Wagner's algorithm

Exponential worst-case runtime as $d = [\mathscr{O}_{\mathbb{Q}(\pi)} : \mathbb{Z}[\pi, \overline{\pi}]] \approx q^{g^2/2}$.

Using the *horizontal structure*, we design a subexponential algorithm:

- fast and proven under GRH for $g = 1$;
- slower and relies on more heuristics for *g* = 2.

(Partly joint work with Drew Sutherland.)

VERTICAL VS. HORIZONTAL

An ℓ-isogeny φ : *A → A ′* is:

- *− vertical* if $End(\mathcal{A}) \neq End(\mathcal{A}')$
- $-$ *horizontal* if $\text{End}(\mathcal{A}) = \text{End}(\mathcal{A}')$

VERTICAL VS. HORIZONTAL

An ℓ-isogeny φ : *A → A ′* is:

- $-$ *vertical* if End(*A*) ≠ End(*A'*) \Rightarrow l $[O_{\mathbb{Q}(\pi)}:\mathbb{Z}[\pi,\overline{\pi}]]$
- $-$ *horizontal* if End(*A*) = End(*A'*) \Leftarrow ℓ \restriction [$\mathcal{O}_{\mathbb{Q}(\pi)}$: ℤ[π, π]]

VERTICAL VS. HORIZONTAL

An ℓ-isogeny φ : *A → A ′* is:

 $-$ *vertical* if End(*A*) ≠ End(*A'*) \Rightarrow l $[O_{\mathbb{Q}(\pi)}:\mathbb{Z}[\pi,\overline{\pi}]]$ $-$ *horizontal* if End(*A*) = End(*A'*) \Leftarrow ℓ \restriction [$\mathcal{O}_{\mathbb{Q}(\pi)}$: ℤ[π, π]]

Now, fix a base field \mathbb{F}_q , a conjugacy class for π , and a prime $\ell.$

RIGHT:

- $-V = \{\text{orders containing } \mathbb{Z}[\pi, \overline{\pi}]\}$
- $-E =$ inclusion

LEFT: (one connected component of)

- *V* = *{*isomorphism classes of p.p. abelian varieties*}*
- $-E = \{ \ell \text{-isogenies} \}$

Gaetan Bisson (Macquarie University) COMPUTING ENDOMORPHISM RINGS ECC'11 7/18

Gaetan Bisson (Macquarie University) COMPUTING ENDOMORPHISM RINGS ECC'11 7/18

G ENDOMORPHISM RINGS $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ ECC'11 7/18

Gaetan Bisson (Macquarie University) C E R ECC'11 7 / 18

COMPLEX MULTIPLICATION

. Principal ideals map *A* to an isomorphic variety. Ideals $\mathfrak a$ such that $\mathfrak a\overline{\mathfrak a}=\ell\mathscr O$ act as ℓ -isogenies on $\{\mathscr A:\mathrm{End}(\mathscr A)\simeq\mathscr O\}.$

COMPLEX MULTIPLICATION

. Principal ideals map *A* to an isomorphic variety. Ideals $\mathfrak a$ such that $\mathfrak a\overline{\mathfrak a}=\ell\mathscr O$ act as ℓ -isogenies on $\{\mathscr A:\mathrm{End}(\mathscr A)\simeq\mathscr O\}.$

For instance, if $\ell \mathcal{O} = \mathfrak{p} \overline{\mathfrak{p}} \mathfrak{q} \overline{\mathfrak{q}}$, ℓ -isogenies correspond to $\mathfrak{p} \mathfrak{q}$, $\mathfrak{p} \overline{\mathfrak{q}}$, and $\overline{\mathfrak{p}} \overline{\mathfrak{q}}$, $\overline{\mathfrak{p}} \mathfrak{q}$.

The ℓ-isogeny graph of $\mathcal A$: End($\mathcal A$) $\simeq \mathcal O$ is their Cayley graph in $cl(\mathcal{O})$.

COMPLEX MULTIPLICATION

. Principal ideals map *A* to an isomorphic variety. Ideals $\mathfrak a$ such that $\mathfrak a\overline{\mathfrak a}=\ell\mathscr O$ act as ℓ -isogenies on $\{\mathscr A:\mathrm{End}(\mathscr A)\simeq\mathscr O\}.$

For instance, if $\ell \mathcal{O} = \mathfrak{p} \overline{\mathfrak{p}} \mathfrak{q} \overline{\mathfrak{q}}$, ℓ -isogenies correspond to $\mathfrak{p} \mathfrak{q}$, $\mathfrak{p} \overline{\mathfrak{q}}$, and $\overline{\mathfrak{p}} \overline{\mathfrak{q}}$, $\overline{\mathfrak{p}} \mathfrak{q}$.

The *ℓ*-isogeny graph of \mathcal{A} : End(\mathcal{A}) $\simeq \mathcal{O}$ is their Cayley graph in $cl(\mathcal{O})$.

EXAMPLE: $(pq)^{26} = 1$ $(p\overline{q})^6 = 1$ $(pq)^{13}(p\overline{q})^3 = 1$

PROBING CLASS GROUPS

 $a b c = 1 \in cl(\mathcal{O}')$

 $a b c \neq 1 \in cl(\mathcal{O})$

PROBING CLASS GROUPS

$$
a \ b \ c = 1 \in cl(\mathcal{O}')
$$
\n
$$
a \ b \ c \neq 1 \in cl(\mathcal{O})
$$
\n
$$
a \ b \ c \neq 1 \in cl(\mathcal{O})
$$
\n
$$
a \ b \ c \neq 1 \in cl(\mathcal{O})
$$
\n
$$
and \ (a \ d \) \simeq 0
$$

Let ${\mathfrak P}$ be a generating set of ideals for cl(${\mathbb Z}[\pi,\overline{\pi}]).$

Define $\Lambda_{\mathscr{O}} = \{x \in \mathbb{Z}^{\mathfrak{P}} : \prod (\mathfrak{p} \mathscr{O})^{x_{\mathfrak{p}}} \text{ principal}\}; \text{thus } \mathbb{Z}^{\mathfrak{P}}/\Lambda_{\mathscr{O}} = \text{cl}(\mathscr{O}).$

Let $\mathfrak P$ be a generating set of ideals for $\mathrm{cl}(\mathbb Z[\pi, \overline{\pi}]).$

Define $\Lambda_{\mathscr{O}} = \{x \in \mathbb{Z}^{\mathfrak{P}} : \prod (\mathfrak{p} \mathscr{O})^{x_{\mathfrak{p}}} \text{ principal}\}; \text{thus } \mathbb{Z}^{\mathfrak{P}}/\Lambda_{\mathscr{O}} = \text{cl}(\mathscr{O}).$

We have $\mathscr{O} \subseteq \mathscr{O}' \Rightarrow \Lambda_{\mathscr{O}} \subseteq \Lambda_{\mathscr{O}'}.$ (Almost an equivalence.)

Let $\mathfrak P$ be a generating set of ideals for $\mathrm{cl}(\mathbb Z[\pi, \overline{\pi}]).$

Define $\Lambda_{\mathscr{O}} = \{x \in \mathbb{Z}^{\mathfrak{P}} : \prod (\mathfrak{p} \mathscr{O})^{x_{\mathfrak{p}}} \text{ principal}\}; \text{thus } \mathbb{Z}^{\mathfrak{P}}/\Lambda_{\mathscr{O}} = \text{cl}(\mathscr{O}).$

We have $\mathscr{O} \subseteq \mathscr{O}' \Rightarrow \Lambda_{\mathscr{O}} \subseteq \Lambda_{\mathscr{O}'}.$ (Almost an equivalence.)

To test if $\Lambda_{\mathscr{O}}\subseteq\Lambda_{\mathrm{End}(\mathscr{A})}$, select *random relations x* \in $\Lambda_{\mathscr{O}}$ and compute

$$
\underbrace{\phi_{\mathfrak{p}_1} \circ \cdots \circ \phi_{\mathfrak{p}_1}}_{x_{\mathfrak{p}_1} \text{ times}} \underbrace{\circ \underbrace{\phi_{\mathfrak{p}_2} \circ \cdots \circ \phi_{\mathfrak{p}_2}}_{x_{\mathfrak{p}_2} \text{ times}} \circ \cdots (\mathcal{A})}
$$

Let $\mathfrak P$ be a generating set of ideals for $\mathrm{cl}(\mathbb Z[\pi, \overline{\pi}]).$

Define $\Lambda_{\mathscr{O}} = \{x \in \mathbb{Z}^{\mathfrak{P}} : \prod (\mathfrak{p} \mathscr{O})^{x_{\mathfrak{p}}} \text{ principal}\}; \text{thus } \mathbb{Z}^{\mathfrak{P}}/\Lambda_{\mathscr{O}} = \text{cl}(\mathscr{O}).$

We have $\mathscr{O} \subseteq \mathscr{O}' \Rightarrow \Lambda_{\mathscr{O}} \subseteq \Lambda_{\mathscr{O}'}.$ (Almost an equivalence.)

To test if $\Lambda_{\mathscr{O}}\subseteq\Lambda_{\mathrm{End}(\mathscr{A})}$, select *random relations x* \in $\Lambda_{\mathscr{O}}$ and compute

$$
\underbrace{\phi_{\mathfrak{p}_1} \circ \cdots \circ \phi_{\mathfrak{p}_1}}_{x_{\mathfrak{p}_1} \text{ times}} \underbrace{\circ \phi_{\mathfrak{p}_2} \circ \cdots \circ \phi_{\mathfrak{p}_2}}_{x_{\mathfrak{p}_2} \text{ times}} \circ \cdots (\mathcal{A})
$$

REMAINS TO:

- Obtain random relations with bounded coefficients.
- Evaluate φ_p.
- Ensure Λ*^O* determines *O* .

Let $\mathfrak P$ be a generating set of ideals for $\mathrm{cl}(\mathbb Z[\pi, \overline{\pi}]).$

Define $\Lambda_{\mathscr{O}} = \{x \in \mathbb{Z}^{\mathfrak{P}} : \prod (\mathfrak{p} \mathscr{O})^{x_{\mathfrak{p}}} \text{ principal}\}; \text{thus } \mathbb{Z}^{\mathfrak{P}}/\Lambda_{\mathscr{O}} = \text{cl}(\mathscr{O}).$

We have $\mathscr{O} \subseteq \mathscr{O}' \Rightarrow \Lambda_{\mathscr{O}} \subseteq \Lambda_{\mathscr{O}'}.$ (Almost an equivalence.)

To test if $\Lambda_{\mathscr{O}}\subseteq\Lambda_{\mathrm{End}(\mathscr{A})}$, select *random relations x* \in $\Lambda_{\mathscr{O}}$ and compute

$$
\underbrace{\phi_{\mathfrak{p}_1} \circ \cdots \circ \phi_{\mathfrak{p}_1}}_{x_{\mathfrak{p}_1} \text{ times}} \underbrace{\circ \underbrace{\phi_{\mathfrak{p}_2} \circ \cdots \circ \phi_{\mathfrak{p}_2}}_{x_{\mathfrak{p}_2} \text{ times}} \circ \cdots (\mathcal{A})}
$$

REMAINS TO:

- Obtain random relations with bounded coefficients.
- Evaluate ϕ_p .
- Ensure $\Lambda_{\mathcal{O}}$ determines $\mathcal{O}.$

→ AVIsogenies → vertical methods

Find products of elements of ${\mathfrak P}$ that are principal in ${\mathscr O}.$

Find products of elements of $\mathfrak P$ that are principal in $\mathscr O.$

- 1. Let $\mathfrak{P} = \{ \mathfrak{p} \text{ prime of norm } < N \}$
- 2. While true do:
- 3. Draw $x \in \{0, ..., h-1\}^{\mathfrak{P}}$ uniformly at random.
- 4. Let *y* ← $\prod \mathfrak{p}^{x_{\mathfrak{p}}}.$
- 5. Let $y' \leftarrow \text{Reduce}(y)$.
- 6. If $y' = \prod p^{z_p}$ for some *z*, return $x z$.

Find products of elements of $\mathfrak P$ that are principal in $\mathscr O.$

- 1. Let $\mathfrak{P} = \{ \mathfrak{p} \text{ prime of norm } \leq N \}$
- 2. While true do:
- 3. Draw $x \in \{0, ..., h-1\}^{\mathfrak{P}}$ uniformly at random.
- 4. Let *y* ← $\prod \mathfrak{p}^{x_{\mathfrak{p}}}.$
- 5. Let $y' \leftarrow \text{Reduce}(y)$.
- 6. If $y' = \prod p^{z_p}$ for some *z*, return $x z$.

TIME: $L(\Delta)^{\gamma} + L(\Delta)^{1/(4\gamma)}$ when $N = L(\Delta)^{\gamma}$, $\Delta = \text{disc}(\mathscr{O})$.

Find products of elements of $\mathfrak P$ that are principal in $\mathscr O.$

- 1. Let $\mathfrak{P} = \{ \mathfrak{p} \text{ prime of norm } < N \}$
- 2. While true do:
- 3. Draw $x \in \{0, ..., h-1\}^{\mathfrak{P}}$ uniformly at random.
- 4. Let *y* ← $\prod \mathfrak{p}^{x_{\mathfrak{p}}}.$
- 5. Let $y' \leftarrow \text{Reduce}(y)$.
- 6. If $y' = \prod p^{z_p}$ for some *z*, return $x z$.

TIME: $L(\Delta)^{\gamma} + L(\Delta)^{1/(4\gamma)}$ when $N = L(\Delta)^{\gamma}$, $\Delta = \text{disc}(\mathscr{O})$.

For any $\mathscr{O}' \subseteq \mathscr{O}$, this gives random relations of $\Lambda_{\mathscr{O}}/\Lambda_{\mathscr{O}'}$. (Rests on GRH for $g = 1$, more for $g = 2$)

Find products of elements of $\mathfrak P$ that are principal in $\mathscr O.$

- 1. Let $\mathfrak{P} = \{ \mathfrak{p} \text{ prime of norm } < N \}$
- 2. While true do:
- 3. Draw $x \in \{0, ..., h-1\}^{\mathfrak{P}}$ uniformly at random.
- 4. Let *y* ← $\prod \mathfrak{p}^{x_{\mathfrak{p}}}.$
- 5. Let $y' \leftarrow \text{Reduce}(y)$.
- 6. If $y' = \prod p^{z_p}$ for some *z*, return $x z$.

TIME: $L(\Delta)^{\gamma} + L(\Delta)^{1/(4\gamma)}$ when $N = L(\Delta)^{\gamma}$, $\Delta = \text{disc}(\mathscr{O})$.

For any $\mathscr{O}' \subseteq \mathscr{O}$, this gives random relations of $\Lambda_{\mathscr{O}}/\Lambda_{\mathscr{O}'}$. (Rests on GRH for $g = 1$, more for $g = 2$)

BOUNDED RELATIONS

To bound coefficients while retaining randomness, we use:

. are quasi-uniformly distributed in cl(*O*). Under GRH, for all ε > 0 there exists *c* > 1 such that for any order *O* : products of at least $c \log(\Delta) / \log \log(\Delta)$ elements of $\{p \text{ of norm} < \log^{2+\epsilon} \Delta\}$

BOUNDED RELATIONS

To bound coefficients while retaining randomness, we use:

. are quasi-uniformly distributed in cl(*O*). Under GRH, for all ε > 0 there exists *c* > 1 such that for any order *O* : products of at least $c \log(\Delta) / \log \log(\Delta)$ elements of $\{p \text{ of norm} < \log^{2+\epsilon} \Delta\}$

So each ideal class not only has a smooth representant, but also one with exponents $o(log(\Delta))$.

BOUNDED RELATIONS

To bound coefficients while retaining randomness, we use:

. are quasi-uniformly distributed in cl(*O*). Under GRH, for all ε > 0 there exists *c* > 1 such that for any order *O* : products of at least $c\log(\Delta)/\log\log(\Delta)$ elements of $\{\mathfrak{p}$ of norm < $\log^{2+\epsilon}\Delta\}$

So each ideal class not only has a smooth representant, but also one with exponents $o(log(\Delta))$.

This implies $\text{diam}(\Lambda_{\mathscr{O}}) = o(\log^{4+\epsilon} \Delta)$, from which we deduce that *random* relations with small coefficients can be generated.

RESTRICTING TO *l*-ISOGENIES

PROBLEM: This might not generate relations with ideals $\mathfrak a$ such that $\mathfrak a\overline{\mathfrak a}=\ell\mathscr O.$

RESTRICTING TO *l*-ISOGENIES

PROBLEM: This might not generate relations with ideals $\mathfrak a$ such that $\mathfrak a\overline{\mathfrak a} = \ell \mathscr O$.

THEORETICAL SOLUTION:

Generate relations in $cl(O^r)$ and fetch them via the reflex typenorm.

RESTRICTING TO *l*-ISOGENIES

PROBLEM: This might not generate relations with ideals $\mathfrak a$ such that $\mathfrak a\overline{\mathfrak a} = \ell\mathscr O$.

THEORETICAL SOLUTION:

Generate relations in $cl(O^r)$ and fetch them via the reflex typenorm.

PRACTICAL SOLUTION: Use BSGS.

GAETAN BISSON (MACC'HARIE UNIVERSity) C ECC'HARIE UNIVERSity) C ECC'HARIE UNIVERSity) C ECC'HARIE UNIVERSity)

THEORETICAL RESULTS

Heuristics (only GRH needed for $g = 1$):

- GRH and smoothness of reduced ideals;
- our relations determine $\Lambda_{\mathscr{O}}$ which determines $\mathscr{O};$
- complex multiplication holds for non-maximal orders.

FING ENDOMORPHISM RINGS RECORDS AND RECORD ECC'11 15 / 18

THEORETICAL RESULTS

Heuristics (only GRH needed for $g = 1$):

- GRH and smoothness of reduced ideals;
- our relations determine $\Lambda_{\mathscr{O}}$ which determines $\mathscr{O};$
- complex multiplication holds for non-maximal orders.

Finding relations: $L(\Delta)^\gamma + L(\Delta)^{1/4\gamma}$ for one with norm $L(\Delta)^\gamma$ Computing isogenies: ℓ 4*g*

THEORETICAL RESULTS

Heuristics (only GRH needed for $g = 1$):

- GRH and smoothness of reduced ideals;
- our relations determine Λ*^O* which determines *O* ;
- complex multiplication holds for non-maximal orders.

Finding relations: $L(\Delta)^\gamma + L(\Delta)^{1/4\gamma}$ for one with norm $L(\Delta)^\gamma$ Computing isogenies: ℓ 4*g*

Computing End($\mathscr A$) for an abelian variety $\mathscr A/\mathbb F_q$ takes time

 $L(q)^{g^{3/2}}$ for $g = 2$ $L(q)^{1/\sqrt{2}}$ for $g = 1$ (faster isogenies, besides factoring)

Let \mathscr{A}/\mathbb{F}_q be the elliptic curve $Y^2 = X^3 - 3X + c$ where

c = 660897170071025494489036936911196131075522079970680898049528 *q* = 1606938044258990275550812343206050075546550943415909014478299

 $[\mathscr{O}_{\mathbb{Q}(\pi)}:\mathbb{Z}[\pi,\overline{\pi}]]= 2\cdot 127\cdot 524287\cdot 7195777666870732918103.$

Let \mathscr{A}/\mathbb{F}_q be the elliptic curve $Y^2 = X^3 - 3X + c$ where

c = 660897170071025494489036936911196131075522079970680898049528 *q* = 1606938044258990275550812343206050075546550943415909014478299

 $[\mathscr{O}_{\mathbb{Q}(\pi)}:\mathbb{Z}[\pi,\overline{\pi}]] = 2 \cdot 127 \cdot 524287 \cdot 7195777666870732918103.$

Using further improvements for $g = 1$ yield the timings:

– four minutes to đnd relations;

– đve minutes to evaluate the corresponding isogenies.

A typical relation was:

$$
p_2^{1798}p_{23}^3p_{29}^1p_{37}^2p_{53}^{29}p_{137}^1p_{149}^1p_{233}^1p_{263}^2p_{547}^1
$$

BEST CASE: Jac($y^2 = 80742x^5 + 56078x^4 + 76952x^3 + 134685x^2 + 60828x + 119537$) over \mathbb{F}_{161983}

$$
[\mathscr{O}_{\mathbb{Q}(\pi)}:\mathbb{Z}[\pi,\overline{\pi}]]=156799
$$

The ideal \mathfrak{p}_3^{115} ¹¹⁵ is principal in $\mathscr{O}_{\mathbb{Q}(\pi)}$ but not in $\mathbb{Z}[\pi,\overline{\pi}].$ Testing that relation took under four minutes.

BEST CASE: Jac($y^2 = 80742x^5 + 56078x^4 + 76952x^3 + 134685x^2 + 60828x + 119537$) over \mathbb{F}_{161983}

$$
[\mathscr{O}_{\mathbb{Q}(\pi)}:\mathbb{Z}[\pi,\overline{\pi}]] = 156799
$$

The ideal \mathfrak{p}_3^{115} ¹¹⁵ is principal in $\mathscr{O}_{\mathbb{Q}(\pi)}$ but not in $\mathbb{Z}[\pi,\overline{\pi}].$ Testing that relation took under four minutes.

AVERAGE CASE: Jac($y^2 = 2987x^5 + 1680x^4 + 3443x^3 + 1918x^2 + 2983x + 489$) over \mathbb{F}_{3499}

$$
[\mathcal{O}_{\mathbb{Q}(\pi)}:\mathbb{Z}[\pi,\overline{\pi}]] = 13^2\cdot 37\cdot 79
$$

Horizontal 3, 5, and 7-isogenies take 1, 3.5, and 5.5 seconds to compute. Using \mathfrak{p}_3^5 $\frac{5}{3}p_7^7$ $_{7}^{7}$ = 1 and \mathfrak{p}_{5}^{10} $_5^{10}$ = 1 suffices to conclude.

BEST CASE: Jac($y^2 = 80742x^5 + 56078x^4 + 76952x^3 + 134685x^2 + 60828x + 119537$) over \mathbb{F}_{161983}

$$
[\mathscr{O}_{\mathbb{Q}(\pi)}:\mathbb{Z}[\pi,\overline{\pi}]] = 156799
$$

The ideal \mathfrak{p}_3^{115} ¹¹⁵ is principal in $\mathscr{O}_{\mathbb{Q}(\pi)}$ but not in $\mathbb{Z}[\pi,\overline{\pi}].$ Testing that relation took under four minutes.

AVERAGE CASE: Jac($y^2 = 2987x^5 + 1680x^4 + 3443x^3 + 1918x^2 + 2983x + 489$) over \mathbb{F}_{3499}

$$
[\mathcal{O}_{\mathbb{Q}(\pi)}:\mathbb{Z}[\pi,\overline{\pi}]] = 13^2\cdot 37\cdot 79
$$

Horizontal 3, 5, and 7-isogenies take 1, 3.5, and 5.5 seconds to compute. Using \mathfrak{p}_3^5 $\frac{5}{3}p_7^7$ $_{7}^{7}$ = 1 and \mathfrak{p}_{5}^{10} $_5^{10}$ = 1 suffices to conclude.

WORST CASE: $[\mathscr{O}_{\mathbb{Q}(\pi)}:\mathbb{Z}[\pi,\overline{\pi}]]=2\cdot 3\cdot 5$; slower than other methods.

