COMPUTING ENDOMORPHISM RINGS OF ABELIAN VARIETIES

Gaetan Bisson

Macquarie University, Sydney, Australia

ECC'11

Let \mathcal{H} be an ordinary hyperelliptic curve of genus g=1,2 over \mathbb{F}_q .

 $\operatorname{Jac}(\mathcal{H})$ is a principally polarized abelian variety $(\mathcal{A},\mathcal{P})$ of dimension g.

Let \mathscr{H} be an ordinary hyperelliptic curve of genus g=1,2 over \mathbb{F}_q . Jac (\mathscr{H}) is a principally polarized abelian variety $(\mathscr{A},\mathscr{P})$ of dimension g.

 $(\mathcal{A},\mathcal{P})$ and $(\mathcal{A}',\mathcal{P}')$ are isomorphic if and only if \mathcal{H} and \mathcal{H}' are.

 ${\mathscr A}$ and ${\mathscr A}'$ are isogenous if and only if π and π' are conjugate.

Let $\mathscr H$ be an ordinary hyperelliptic curve of genus g=1,2 over $\mathbb F_q$. Jac $(\mathscr H)$ is a principally polarized abelian variety $(\mathscr A,\mathscr P)$ of dimension g.

 $(\mathscr{A},\mathscr{P})$ and $(\mathscr{A}',\mathscr{P}')$ are isomorphic if and only if \mathscr{H} and \mathscr{H}' are. (invariants)

 ${\mathscr A}$ and ${\mathscr A}'$ are isogenous if and only if π and π' are conjugate. (point counting)

Let \mathcal{H} be an ordinary hyperelliptic curve of genus g = 1, 2 over \mathbb{F}_q .

 $\operatorname{Jac}(\mathcal{H})$ is a principally polarized abelian variety $(\mathscr{A},\mathscr{P})$ of dimension g.

$$(\mathcal{A}, \mathcal{P})$$
 and $(\mathcal{A}', \mathcal{P}')$ are isomorphic if and only if \mathcal{H} and \mathcal{H}' are. (invariants)

 ${\mathscr A}$ and ${\mathscr A}'$ are isogenous if and only if π and π' are conjugate. (point counting)

CRYPTO: computable isogenies transport the DLP.

Computing an isogeny with isotropic kernel $(\mathbb{Z}/\ell\mathbb{Z})^g$ takes roughly ℓ^{2g} time.

Let $\mathcal H$ be an ordinary hyperelliptic curve of genus g=1,2 over $\mathbb F_q$.

 $\mathrm{Jac}(\mathcal{H})$ is a principally polarized abelian variety $(\mathscr{A},\mathscr{P})$ of dimension g.

$$(\mathcal{A}, \mathcal{P})$$
 and $(\mathcal{A}', \mathcal{P}')$ are isomorphic if and only if \mathcal{H} and \mathcal{H}' are. (invariants)

 ${\mathscr A}$ and ${\mathscr A}'$ are isogenous if and only if π and π' are conjugate. (point counting)

CRYPTO: computable isogenies transport the DLP.

Computing an isogeny with isotropic kernel $(\mathbb{Z}/\ell\mathbb{Z})^g$ takes roughly ℓ^{2g} time. ℓ -isogeny

Let π be the Frobenius endomorphism of \mathscr{A} .

The ring of endomorphisms of \mathscr{A} contains $\mathbb{Z}[\pi,\overline{\pi}]$ and is contained in $\mathscr{O}_{\mathbb{Q}(\pi)}$.

Let π be the Frobenius endomorphism of \mathscr{A} .

The ring of endomorphisms of \mathscr{A} contains $\mathbb{Z}[\pi,\overline{\pi}]$ and is contained in $\mathscr{O}_{\mathbb{Q}(\pi)}$.

If $\mathscr{A} \to \mathscr{A}'$ is an ℓ -isogeny, then d divides ℓ^{4g-2} where

$$d = \left[\operatorname{End}(\mathscr{A}) + \operatorname{End}(\mathscr{A}') : \operatorname{End}(\mathscr{A}) \cap \operatorname{End}(A') \right].$$

Let π be the Frobenius endomorphism of \mathscr{A} .

The ring of endomorphisms of \mathscr{A} contains $\mathbb{Z}[\pi,\overline{\pi}]$ and is contained in $\mathscr{O}_{\mathbb{Q}(\pi)}$.

If $\mathscr{A} \to \mathscr{A}'$ is an ℓ -isogeny, then d divides ℓ^{4g-2} where

$$d = \left[\operatorname{End}(\mathscr{A}) + \operatorname{End}(\mathscr{A}') : \operatorname{End}(\mathscr{A}) \cap \operatorname{End}(A') \right].$$

To find an isogeny from \mathscr{A} to \mathscr{A}' :

- If $\operatorname{End}(\mathscr{A}) \neq \operatorname{End}(\mathscr{A}')$, take a *d*-isogeny, and then...

Let π be the Frobenius endomorphism of \mathscr{A} .

The ring of endomorphisms of \mathscr{A} contains $\mathbb{Z}[\pi,\overline{\pi}]$ and is contained in $\mathscr{O}_{\mathbb{Q}(\pi)}$.

If $\mathscr{A} \to \mathscr{A}'$ is an ℓ -isogeny, then d divides ℓ^{4g-2} where

$$d = \left[\operatorname{End}(\mathscr{A}) + \operatorname{End}(\mathscr{A}') : \operatorname{End}(\mathscr{A}) \cap \operatorname{End}(\mathscr{A}') \right].$$

To find an isogeny from \mathscr{A} to \mathscr{A}' :

- If $\operatorname{End}(\mathscr{A}) \neq \operatorname{End}(\mathscr{A}')$, take a *d*-isogeny, and then...
- If $\operatorname{End}(\mathscr{A}) = \operatorname{End}(\mathscr{A}')$, use Pollard's rho (or a quantum computer).

Assume we can test whether $\mathscr{O} \subseteq \operatorname{End}(\mathscr{A})$...

4/18

4/18

4/18

PREVIOUS WORK:

- Kohel's algorithm (g = 1)
- Eisenträger-Lauter method
- Wagner's algorithm

Previous work:

- Kohel's algorithm (g = 1)
- Eisenträger-Lauter method
- Wagner's algorithm

Exponential worst-case runtime as $d = [\mathcal{O}_{\mathbb{Q}(\pi)} : \mathbb{Z}[\pi, \overline{\pi}]] \approx q^{g^2/2}$.

PREVIOUS WORK:

- Kohel's algorithm (g = 1)
- Eisenträger-Lauter method
- Wagner's algorithm

Exponential worst-case runtime as $d = [\mathcal{O}_{\mathbb{Q}(\pi)} : \mathbb{Z}[\pi, \overline{\pi}]] \approx q^{g^2/2}$.

Using the *horizontal structure*, we design a subexponential algorithm:

- fast and proven under GRH for g = 1;
- slower and relies on more heuristics for g = 2.

(Partly joint work with Drew Sutherland.)

VERTICAL VS. HORIZONTAL

An ℓ -isogeny $\varphi: \mathscr{A} \to \mathscr{A}'$ is:

- vertical if End(\mathscr{A}) ≠ End(\mathscr{A}')
- *horizontal* if $End(\mathcal{A}) = End(\mathcal{A}')$

VERTICAL VS. HORIZONTAL

An ℓ -isogeny $\varphi: \mathscr{A} \to \mathscr{A}'$ is:

- $\ \textit{vertical} \quad \text{ if } \mathrm{End}(\mathcal{A}) \neq \mathrm{End}(\mathcal{A}') \Rightarrow \ell \ \big| \ [\mathcal{O}_{\mathbb{O}(\pi)} : \mathbb{Z}[\pi, \overline{\pi}]]$
- $\ \mathit{horizontal} \ \mathsf{if} \ \mathsf{End}(\mathscr{A}) = \mathsf{End}(\mathscr{A}') \Longleftarrow \ell \nmid [\mathscr{O}_{\mathbb{Q}(\pi)} \colon \mathbb{Z}[\pi, \overline{\pi}]]$

VERTICAL VS. HORIZONTAL

An ℓ -isogeny $\varphi: \mathscr{A} \to \mathscr{A}'$ is:

- $\ \textit{vertical} \quad \text{ if } \operatorname{End}(\mathscr{A}) \neq \operatorname{End}(\mathscr{A}') \Rightarrow \ell \mid [\mathscr{O}_{\mathbb{Q}(\pi)} : \mathbb{Z}[\pi, \overline{\pi}]]$
- $\ \mathit{horizontal} \ \mathsf{if} \ \mathsf{End}(\mathscr{A}) = \mathsf{End}(\mathscr{A}') \Longleftarrow \ell \nmid [\mathscr{O}_{\mathbb{Q}(\pi)} \colon \mathbb{Z}[\pi, \overline{\pi}]]$

Now, fix a base field \mathbb{F}_q , a conjugacy class for π , and a prime ℓ .

RIGHT:

- $-V = \{ \text{orders containing } \mathbb{Z}[\pi, \overline{\pi}] \}$
- E = inclusion

Left: (one connected component of)

- $-V = \{\text{isomorphism classes of p.p. abelian varieties}\}$
- $-E = \{\ell \text{-isogenies}\}\$

COMPLEX MULTIPLICATION

Ideals \mathfrak{a} such that $\mathfrak{a}\overline{\mathfrak{a}} = \ell \mathcal{O}$ act as ℓ -isogenies on $\{ \mathscr{A} : \operatorname{End}(\mathscr{A}) \simeq \mathcal{O} \}$. Principal ideals map \mathscr{A} to an isomorphic variety.

COMPLEX MULTIPLICATION

Ideals $\mathfrak a$ such that $\mathfrak a \overline{\mathfrak a} = \ell \mathscr O$ act as ℓ -isogenies on $\{\mathscr A: \operatorname{End}(\mathscr A) \simeq \mathscr O\}$. Principal ideals map $\mathscr A$ to an isomorphic variety.

For instance, if $\ell \mathcal{O} = \mathfrak{p} \overline{\mathfrak{p}} \overline{\mathfrak{q}}$, ℓ -isogenies correspond to $\mathfrak{p}\mathfrak{q}$, $\mathfrak{p}\overline{\mathfrak{q}}$, and $\overline{\mathfrak{p}}\overline{\mathfrak{q}}$, $\overline{\mathfrak{p}}\mathfrak{q}$.

The ℓ -isogeny graph of $\mathscr{A}: \operatorname{End}(\mathscr{A}) \simeq \mathscr{O}$ is their Cayley graph in $\operatorname{cl}(\mathscr{O})$.

COMPLEX MULTIPLICATION

Ideals $\mathfrak a$ such that $\mathfrak a \overline{\mathfrak a} = \ell \mathscr O$ act as ℓ -isogenies on $\{\mathscr A : \operatorname{End}(\mathscr A) \simeq \mathscr O\}$. Principal ideals map $\mathscr A$ to an isomorphic variety.

For instance, if $\ell \mathcal{O} = \mathfrak{p} \overline{\mathfrak{p}} q \overline{\mathfrak{q}}$, ℓ -isogenies correspond to $\mathfrak{p} \mathfrak{q}$, $\mathfrak{p} \overline{\mathfrak{q}}$, and $\overline{\mathfrak{p}} \overline{\mathfrak{q}}$, $\overline{\mathfrak{p}} \mathfrak{q}$.

The ℓ -isogeny graph of $\mathscr{A}:\operatorname{End}(\mathscr{A})\simeq\mathscr{O}$ is their Cayley graph in $\operatorname{cl}(\mathscr{O}).$

EXAMPLE:

$$(\mathfrak{p}\mathfrak{q})^{26} = 1$$
$$(\mathfrak{p}\mathfrak{q})^6 = 1$$

$$(\mathfrak{p}\mathfrak{q})^{13}(\mathfrak{p}\overline{\mathfrak{q}})^3 = 1$$

PROBING CLASS GROUPS

$$\mathfrak{a} \mathfrak{b} \mathfrak{c} = 1 \in \mathrm{cl}(\mathscr{O}')$$

$$\mathfrak{a} \mathfrak{b} \mathfrak{c} \neq 1 \in \operatorname{cl}(\mathcal{O})$$

PROBING CLASS GROUPS

$$a b c = 1 \in cl(\mathcal{O}')$$
 \iff $End(\mathcal{A}') \simeq \mathcal{O}'$

$$a b c \neq 1 \in cl(\mathcal{O})$$
 \iff $End(\mathcal{A}) \simeq \mathcal{O}$

Let $\mathfrak P$ be a generating set of ideals for $\operatorname{cl}(\mathbb Z[\pi,\overline{\pi}])$.

Define $\Lambda_{\mathscr{O}} = \{x \in \mathbb{Z}^{\mathfrak{P}} : \prod (\mathfrak{p}\mathscr{O})^{x_{\mathfrak{p}}} \text{ principal}\}; \text{ thus } \mathbb{Z}^{\mathfrak{P}}/\Lambda_{\mathscr{O}} = \mathrm{cl}(\mathscr{O}).$

Let \mathfrak{P} be a generating set of ideals for $\operatorname{cl}(\mathbb{Z}[\pi,\overline{\pi}])$.

Define
$$\Lambda_{\mathcal{O}} = \{x \in \mathbb{Z}^{\mathfrak{P}} : \prod (\mathfrak{p} \mathcal{O})^{x_{\mathfrak{p}}} \text{ principal} \}; \text{ thus } \mathbb{Z}^{\mathfrak{P}} / \Lambda_{\mathcal{O}} = \text{cl}(\mathcal{O}).$$

We have $\mathscr{O} \subseteq \mathscr{O}' \Rightarrow \Lambda_{\mathscr{O}} \subseteq \Lambda_{\mathscr{O}'}$. (Almost an equivalence.)

Let \mathfrak{P} be a generating set of ideals for $\operatorname{cl}(\mathbb{Z}[\pi,\overline{\pi}])$.

Define $\Lambda_{\mathcal{O}} = \{x \in \mathbb{Z}^{\mathfrak{P}} : \prod (\mathfrak{p} \mathcal{O})^{x_{\mathfrak{p}}} \text{ principal}\}; \text{ thus } \mathbb{Z}^{\mathfrak{P}} / \Lambda_{\mathcal{O}} = \text{cl}(\mathcal{O}).$

We have $\mathscr{O}\subseteq\mathscr{O}'\Rightarrow\Lambda_{\mathscr{O}}\subseteq\Lambda_{\mathscr{O}'}.$ (Almost an equivalence.)

To test if $\Lambda_{\mathscr{O}} \subseteq \Lambda_{\operatorname{End}(\mathscr{A})}$, select *random relations* $x \in \Lambda_{\mathscr{O}}$ and compute

$$\underbrace{\phi_{\mathfrak{p}_1} \circ \cdots \circ \phi_{\mathfrak{p}_1}}_{x_{\mathfrak{p}_1} \text{ times}} \circ \underbrace{\phi_{\mathfrak{p}_2} \circ \cdots \circ \phi_{\mathfrak{p}_2}}_{x_{\mathfrak{p}_2} \text{ times}} \circ \cdots (\mathscr{A})$$

Let $\mathfrak P$ be a generating set of ideals for $\operatorname{cl}(\mathbb Z[\pi,\overline{\pi}])$.

Define $\Lambda_{\mathcal{O}} = \{x \in \mathbb{Z}^{\mathfrak{P}} : \prod (\mathfrak{p} \mathcal{O})^{x_{\mathfrak{p}}} \text{ principal}\}; \text{ thus } \mathbb{Z}^{\mathfrak{P}} / \Lambda_{\mathcal{O}} = \text{cl}(\mathcal{O}).$

We have $\mathscr{O}\subseteq\mathscr{O}'\Rightarrow\Lambda_{\mathscr{O}}\subseteq\Lambda_{\mathscr{O}'}.$ (Almost an equivalence.)

To test if $\Lambda_{\mathscr{O}} \subseteq \Lambda_{\operatorname{End}(\mathscr{A})}$, select *random relations* $x \in \Lambda_{\mathscr{O}}$ and compute

$$\underbrace{\phi_{\mathfrak{p}_1} \circ \cdots \circ \phi_{\mathfrak{p}_1}}_{x_{\mathfrak{p}_1} \text{ times}} \circ \underbrace{\phi_{\mathfrak{p}_2} \circ \cdots \circ \phi_{\mathfrak{p}_2}}_{x_{\mathfrak{p}_2} \text{ times}} \circ \cdots (\mathscr{A})$$

REMAINS TO:

- Obtain random relations with bounded coefficients.
- Evaluate ϕ_n .
- Ensure $\Lambda_{\mathcal{O}}$ determines \mathcal{O} .

Let $\mathfrak P$ be a generating set of ideals for $\operatorname{cl}(\mathbb Z[\pi,\overline{\pi}])$.

Define
$$\Lambda_{\mathcal{O}} = \{x \in \mathbb{Z}^{\mathfrak{P}} : \prod (\mathfrak{p}\mathcal{O})^{x_{\mathfrak{p}}} \text{ principal}\}; \text{ thus } \mathbb{Z}^{\mathfrak{P}}/\Lambda_{\mathcal{O}} = \text{cl}(\mathcal{O}).$$

We have
$$\mathscr{O}\subseteq\mathscr{O}'\Rightarrow\Lambda_{\mathscr{O}}\subseteq\Lambda_{\mathscr{O}'}.$$
 (Almost an equivalence.)

To test if $\Lambda_{\mathscr{O}} \subseteq \Lambda_{\operatorname{End}(\mathscr{A})}$, select *random relations* $x \in \Lambda_{\mathscr{O}}$ and compute

$$\underbrace{\phi_{\mathfrak{p}_1} \circ \cdots \circ \phi_{\mathfrak{p}_1}}_{x_{\mathfrak{p}_1} \text{ times}} \circ \underbrace{\phi_{\mathfrak{p}_2} \circ \cdots \circ \phi_{\mathfrak{p}_2}}_{x_{\mathfrak{p}_2} \text{ times}} \circ \cdots (\mathscr{A})$$

REMAINS TO:

- Obtain random relations with bounded coefficients.
- Evaluate ϕ_n .

 \longrightarrow AVIsogenies

- Ensure $\Lambda_{\mathcal{O}}$ determines \mathcal{O} .

 \longrightarrow vertical methods

Find products of elements of $\mathfrak P$ that are principal in $\mathscr O$.

Find products of elements of $\mathfrak P$ that are principal in $\mathscr O$.

- 1. Let $\mathfrak{P} = \{\mathfrak{p} \text{ prime of norm } < N\}$
- 2. While true do:
- 3. Draw $x \in \{0, ..., h-1\}^{\mathfrak{P}}$ uniformly at random.
- 4. Let $y \leftarrow \prod \mathfrak{p}^{x_{\mathfrak{p}}}$.
- 5. Let $y' \leftarrow \text{Reduce}(y)$.
- 6. If $y' = \prod \mathfrak{p}^{z_{\mathfrak{p}}}$ for some z, return x z.

Find products of elements of $\mathfrak P$ that are principal in $\mathscr O$.

- 1. Let $\mathfrak{P} = \{\mathfrak{p} \text{ prime of norm } < N\}$
- 2. While true do:
- 3. Draw $x \in \{0, ..., h-1\}^{\mathfrak{P}}$ uniformly at random.
- 4. Let $y \leftarrow \prod \mathfrak{p}^{x_{\mathfrak{p}}}$.
- 5. Let $y' \leftarrow \text{Reduce}(y)$.
- 6. If $y' = \prod \mathfrak{p}^{z_{\mathfrak{p}}}$ for some z, return x z.

Time: $L(\Delta)^{\gamma} + L(\Delta)^{1/(4\gamma)}$ when $N = L(\Delta)^{\gamma}$, $\Delta = \operatorname{disc}(\mathcal{O})$.

Find products of elements of $\mathfrak P$ that are principal in $\mathscr O$.

- 1. Let $\mathfrak{P} = \{\mathfrak{p} \text{ prime of norm } < N\}$
- 2. While true do:
- 3. Draw $x \in \{0, ..., h-1\}^{\mathfrak{P}}$ uniformly at random.
- 4. Let $y \leftarrow \prod \mathfrak{p}^{x_{\mathfrak{p}}}$.
- 5. Let $y' \leftarrow \text{Reduce}(y)$.
- 6. If $y' = \prod \mathfrak{p}^{z_{\mathfrak{p}}}$ for some z, return x z.

Time:
$$L(\Delta)^{\gamma} + L(\Delta)^{1/(4\gamma)}$$
 when $N = L(\Delta)^{\gamma}$, $\Delta = \operatorname{disc}(\mathcal{O})$.

For any $\mathcal{O}' \subseteq \mathcal{O}$, this gives random relations of $\Lambda_{\mathcal{O}}/\Lambda_{\mathcal{O}'}$. (Rests on GRH for g=1, more for g=2)

Find products of elements of $\mathfrak P$ that are principal in $\mathscr O$.

- 1. Let $\mathfrak{P} = \{\mathfrak{p} \text{ prime of norm } < N\}$
- 2. While true do:
- 3. Draw $x \in \{0, ..., h-1\}^{\mathfrak{P}}$ uniformly at random.
- 4. Let $y \leftarrow \prod \mathfrak{p}^{x_{\mathfrak{p}}}$.
- 5. Let $y' \leftarrow \text{Reduce}(y)$.
- 6. If $y' = \prod \mathfrak{p}^{z_{\mathfrak{p}}}$ for some z, return x z.

Time:
$$L(\Delta)^{\gamma} + L(\Delta)^{1/(4\gamma)}$$
 when $N = L(\Delta)^{\gamma}$, $\Delta = \operatorname{disc}(\mathcal{O})$.

For any $\mathcal{O}' \subseteq \mathcal{O}$, this gives random relations of $\Lambda_{\mathcal{O}}/\Lambda_{\mathcal{O}'}$. (Rests on GRH for g=1, more for g=2)

BOUNDED RELATIONS

To bound coefficients while retaining randomness, we use:

Under GRH, for all $\varepsilon > 0$ there exists c > 1 such that for any order \mathcal{O} : products of at least $c \log(\Delta) / \log\log(\Delta)$ elements of $\{\mathfrak{p} \text{ of norm } < \log^{2+\varepsilon} \Delta\}$ are quasi-uniformly distributed in $cl(\mathcal{O})$.

BOUNDED RELATIONS

To bound coefficients while retaining randomness, we use:

Under GRH, for all $\varepsilon > 0$ there exists c > 1 such that for any order \mathcal{O} : products of at least $c \log(\Delta) / \log\log(\Delta)$ elements of $\{\mathfrak{p} \text{ of norm } < \log^{2+\varepsilon} \Delta\}$ are quasi-uniformly distributed in $cl(\mathcal{O})$.

So each ideal class not only has a smooth representant, but also one with exponents $o(\log(\Delta))$.

BOUNDED RELATIONS

To bound coefficients while retaining randomness, we use:

Under GRH, for all $\varepsilon > 0$ there exists c > 1 such that for any order \mathcal{O} : products of at least $c \log(\Delta) / \log\log(\Delta)$ elements of $\{\mathfrak{p} \text{ of norm } < \log^{2+\varepsilon} \Delta\}$ are quasi-uniformly distributed in $cl(\mathcal{O})$.

So each ideal class not only has a smooth representant, but also one with exponents $o(\log(\Delta))$.

This implies $\operatorname{diam}(\Lambda_{\mathcal{O}}) = o(\log^{4+\varepsilon} \Delta)$, from which we deduce that *random* relations with small coefficients can be generated.

RESTRICTING TO **l**-isogenies

PROBLEM: This might not generate relations with ideals \mathfrak{a} such that $\mathfrak{a}\overline{\mathfrak{a}} = \ell \mathscr{O}$.

RESTRICTING TO **l**-isogenies

PROBLEM: This might not generate relations with ideals \mathfrak{a} such that $a\overline{\mathfrak{a}} = \ell \mathcal{O}$.

THEORETICAL SOLUTION:

Generate relations in $cl(\mathcal{O}^r)$ and fetch them via the reflex typenorm.

RESTRICTING TO **l**-isogenies

PROBLEM: This might not generate relations with ideals \mathfrak{a} such that $a\overline{\mathfrak{a}} = \ell \mathcal{O}$.

THEORETICAL SOLUTION:

Generate relations in $cl(\mathcal{O}^r)$ and fetch them via the reflex typenorm.

PRACTICAL SOLUTION: Use BSGS.

THEORETICAL RESULTS

Heuristics (only GRH needed for g = 1):

- GRH and smoothness of reduced ideals;
- our relations determine $\Lambda_{\mathcal{O}}$ which determines \mathcal{O} ;
- complex multiplication holds for non-maximal orders.

THEORETICAL RESULTS

Heuristics (only GRH needed for g = 1):

- GRH and smoothness of reduced ideals;
- our relations determine $\Lambda_{\mathcal{O}}$ which determines \mathcal{O} ;
- complex multiplication holds for non-maximal orders.

Finding relations: $L(\Delta)^{\gamma} + L(\Delta)^{1/4\gamma}$ for one with norm $L(\Delta)^{\gamma}$

Computing isogenies: ℓ^{4g}

THEORETICAL RESULTS

Heuristics (only GRH needed for g = 1):

- GRH and smoothness of reduced ideals;
- our relations determine $\Lambda_{\mathcal{O}}$ which determines \mathcal{O} ;
- complex multiplication holds for non-maximal orders.

Finding relations: $L(\Delta)^{\gamma} + L(\Delta)^{1/4\gamma}$ for one with norm $L(\Delta)^{\gamma}$

Computing isogenies: ℓ^{4g}

Computing $\operatorname{End}(\mathscr{A})$ for an abelian variety \mathscr{A}/\mathbb{F}_q takes time

$$L(q)^{g^{3/2}}$$
 for $g=2$
 $L(q)^{1/\sqrt{2}}$ for $g=1$ (faster isogenies, besides factoring)

PRACTICAL RESULTS FOR g = 1

Let \mathcal{A}/\mathbb{F}_q be the elliptic curve $Y^2 = X^3 - 3X + c$ where

$$\begin{split} c &= 660897170071025494489036936911196131075522079970680898049528 \\ q &= 1606938044258990275550812343206050075546550943415909014478299 \end{split}$$

 $[\mathcal{O}_{\mathbb{Q}(\pi)}: \mathbb{Z}[\pi, \overline{\pi}]] = 2 \cdot 127 \cdot 524287 \cdot 7195777666870732918103.$

Let \mathcal{A}/\mathbb{F}_q be the elliptic curve $Y^2 = X^3 - 3X + c$ where

$$\begin{split} c &= 660897170071025494489036936911196131075522079970680898049528 \\ q &= 1606938044258990275550812343206050075546550943415909014478299 \end{split}$$

$$[\mathscr{O}_{\mathbb{Q}(\pi)}: \mathbb{Z}[\pi, \overline{\pi}]] = 2 \cdot 127 \cdot 524287 \cdot 7195777666870732918103.$$

Using further improvements for g = 1 yield the timings:

- four minutes to find relations;
 - five minutes to evaluate the corresponding isogenies.

A typical relation was:

$$\mathfrak{p}_{2}^{1798}\mathfrak{p}_{23}^{3}\mathfrak{p}_{29}^{1}\mathfrak{p}_{37}^{2}\mathfrak{p}_{53}^{29}\mathfrak{p}_{137}^{1}\mathfrak{p}_{149}^{1}\mathfrak{p}_{233}^{1}\mathfrak{p}_{263}^{2}\mathfrak{p}_{547}^{1}$$

BEST CASE:
$$Jac(y^2 = 80742x^5 + 56078x^4 + 76952x^3 + 134685x^2 + 60828x + 119537)$$
 over \mathbb{F}_{161983}

$$[\mathcal{O}_{\mathbb{Q}(\pi)}:\mathbb{Z}[\pi,\overline{\pi}]]=156799$$

The ideal \mathfrak{p}_3^{115} is principal in $\mathscr{O}_{\mathbb{Q}(\pi)}$ but not in $\mathbb{Z}[\pi,\overline{\pi}]$. Testing that relation took under four minutes.

BEST CASE: $Jac(y^2 = 80742x^5 + 56078x^4 + 76952x^3 + 134685x^2 + 60828x + 119537)$ over \mathbb{F}_{161983}

$$[\mathcal{O}_{\mathbb{Q}(\pi)}:\mathbb{Z}[\pi,\overline{\pi}]]=156799$$

The ideal \mathfrak{p}_3^{115} is principal in $\mathscr{O}_{\mathbb{Q}(\pi)}$ but not in $\mathbb{Z}[\pi,\overline{\pi}]$. Testing that relation took under four minutes.

AVERAGE CASE: $Jac(y^2 = 2987x^5 + 1680x^4 + 3443x^3 + 1918x^2 + 2983x + 489)$ over \mathbb{F}_{3499}

$$[\mathscr{O}_{\mathbb{Q}(\pi)}:\mathbb{Z}[\pi,\overline{\pi}]]=13^2\cdot 37\cdot 79$$

Horizontal 3, 5, and 7-isogenies take 1, 3.5, and 5.5 seconds to compute. Using $\mathfrak{p}_3^5\mathfrak{p}_7^7=1$ and $\mathfrak{p}_5^{10}=1$ suffices to conclude.

BEST CASE: $Jac(y^2 = 80742x^5 + 56078x^4 + 76952x^3 + 134685x^2 + 60828x + 119537)$ over \mathbb{F}_{161983}

$$[\mathcal{O}_{\mathbb{Q}(\pi)}:\mathbb{Z}[\pi,\overline{\pi}]]=156799$$

The ideal \mathfrak{p}_3^{115} is principal in $\mathscr{O}_{\mathbb{Q}(\pi)}$ but not in $\mathbb{Z}[\pi,\overline{\pi}]$. Testing that relation took under four minutes.

AVERAGE CASE: $Jac(y^2 = 2987x^5 + 1680x^4 + 3443x^3 + 1918x^2 + 2983x + 489)$ over \mathbb{F}_{3499}

$$[\mathscr{O}_{\mathbb{Q}(\pi)}: \mathbb{Z}[\pi, \overline{\pi}]] = 13^2 \cdot 37 \cdot 79$$

Horizontal 3, 5, and 7-isogenies take 1, 3.5, and 5.5 seconds to compute. Using $\mathfrak{p}_3^5\mathfrak{p}_7^7=1$ and $\mathfrak{p}_5^{10}=1$ suffices to conclude.

Worst Case: $[\mathcal{O}_{\mathbb{Q}(\pi)}: \mathbb{Z}[\pi, \overline{\pi}]] = 2 \cdot 3 \cdot 5$; slower than other methods.

NEXT YEAR: g = 3?!

