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I  A V

LetH be an ordinary hyperelliptic curve of genus g = 1,2 over Fq.
Jac(H ) is a principally polarized abelian variety (A ,P ) of dimension g.

.

......(A ,P ) and (A ′,P ′) are isomorphic if and only ifH andH ′ are. (invariants)

.

......A andA ′ are isogenous if and only if π and π′ are conjugate. (point counting)

C: computable isogenies transport the DLP.

Computing an isogeny with isotropic kernel (Z/ℓZ)g takes roughly ℓ2g time.
ℓ-isogeny
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E R

Let π be the Frobenius endomorphism ofA .

ăe ring of endomorphisms ofA containsZ[π,π] and is contained in OQ(π).

.

......

IfA →A ′ is an ℓ-isogeny, then d divides ℓ4g−2 where

d =
�
End(A ) + End(A ′) : End(A )∩End(A′)

�
.

To đnd an isogeny fromA toA ′:
– If End(A ) ≠ End(A ′), take a d-isogeny, and then...
– If End(A ) = End(A ′), use Pollard’s rho (or a quantum computer).
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C E R (easy part)
Assume we can test whether O ⊆ End(A )...
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C E R (hard part)

P :
– Kohel’s algorithm (g = 1)
– Eisenträger–Lauter method
– Wagner’s algorithm

Exponential worst-case runtime as d = [OQ(π) :Z[π,π]] ≈ qg2/2.

Using the horizontal structure, we design a subexponential algorithm:
– fast and proven under GRH for g = 1;
– slower and relies on more heuristics for g = 2.

(Partly joint work with Drew Sutherland.)
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V . H

An ℓ-isogeny φ :A →A ′ is:
– vertical if End(A ) ≠ End(A ′)
– horizontal if End(A ) = End(A ′)

Now, đx a base đeld Fq, a conjugacy class for π, and a prime ℓ.

R:
– V = {orders containingZ[π,π]}
– E = inclusion

L: (one connected component of )
– V = {isomorphism classes of p.p. abelian varieties}
– E = {ℓ-isogenies}
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V S  g = 1 (Kohel’s thesis)

OQ(π)

Z[π,π]
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V S  g = 2
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C M
.

......
Ideals a such that aa = ℓO act as ℓ-isogenies on {A : End(A )≃O }.
Principal ideals mapA to an isomorphic variety.

For instance, if ℓO = ppqq, ℓ-isogenies correspond to pq, pq, and pq, pq.

ăe ℓ-isogeny graph ofA : End(A )≃O
is their Cayley graph in cl(O ).

E:
(pq)26 = 1
(pq)6 = 1
(pq)13(pq)3 = 1
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P C G

⇐⇒a b c = 1 ∈ cl(O ′)

a b c 6= 1 ∈ cl(O ) ⇐⇒
End(A )'O

End(A ′)'O ′
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R

LetP be a generating set of ideals for cl(Z[π,π]).
Deđne ΛO = {x �ZP :

∏
(pO )xp principal}; thusZP/ΛO = cl(O ).

.

......We have O ⊆O ′⇒ΛO ⊆ΛO ′ . (Almost an equivalence.)

To test if ΛO ⊆ΛEnd(A ), select random relations x �ΛO and compute

φp1
◦ · · · ◦ φp1︸ ︷︷ ︸
xp1

times

◦φp2
◦ · · · ◦ φp2︸ ︷︷ ︸
xp2

times

◦ · · · (A )

R :
– Obtain random relations with bounded coefficients.
– Evaluate φp.
– Ensure ΛO determines O .
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F R

Find products of elements ofP that are principal in O .

1. LetP = {p prime of norm <N}
2. While true do:
3. Draw x � {0,… ,h− 1}P uniformly at random.
4. Let y←∏pxp .
5. Let y′← Reduce(y).
6. If y′ =∏pzp for some z, return x− z.

T: L(Δ)γ +L(Δ)1/(4γ) whenN = L(Δ)γ, Δ = disc(O ).

For any O ′ ⊆O , this gives random relations of ΛO /ΛO ′ .
(Rests on GRH for g = 1, more for g = 2)
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B R

To bound coefficients while retaining randomness, we use:

.

......

Under GRH, for all ε > 0 there exists c > 1 such that for any order O :
products of at least c log(Δ)/ log log(Δ) elements of {p of norm < log2+ε Δ}
are quasi-uniformly distributed in cl(O ).

So each ideal class not only has a smooth representant,
but also one with exponents o(log(Δ)).

ăis implies diam(ΛO ) = o(log4+ε Δ), from which we deduce
that random relations with small coefficients can be generated.
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R  ℓ-

P: ăis might not generate relations with ideals a such that aa = ℓO .

T S:
Generate relations in cl(O r) and fetch them via the reĔex typenorm.

Kc
==

Φ

. � ||
||
||
||

aa
Φr

0 PB
BB

BB
BB

B

K
NΦ

,,e c a _ ] [ Y Kr

NΦr

ll eca_][Y

K+

??
??

??
??

Kr
+

��
��
��
��

Q

P S: Use BSGS.
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T R

Heuristics (only GRH needed for g = 1):
– GRH and smoothness of reduced ideals;
– our relations determine ΛO which determines O ;
– complex multiplication holds for non-maximal orders.

Finding relations: L(Δ)γ +L(Δ)1/4γ for one with norm L(Δ)γ

Computing isogenies: ℓ4g

.

......

Computing End(A ) for an abelian varietyA /Fq takes time

L(q)g
3/2

for g = 2
L(q)1/

p
2 for g = 1 (faster isogenies, besides factoring)
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P R  g = 1

LetA /Fq be the elliptic curve Y2 = X3− 3X+ c where

c = 660897170071025494489036936911196131075522079970680898049528
q = 1606938044258990275550812343206050075546550943415909014478299

[OQ(π) :Z[π,π]] = 2 · 127 · 524287 · 7195777666870732918103.

Using further improvements for g = 1 yield the timings:
– four minutes to đnd relations;
– đve minutes to evaluate the corresponding isogenies.

A typical relation was:

p1798
2 p3

23p
1
29p

2
37p

29
53p

1
137p

1
149p

1
233p

2
263p

1
547
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P R  g = 2

B C: Jac(y2 = 80742x5 +56078x4 +76952x3 +134685x2 +60828x+119537) over F161983
[OQ(π) :Z[π,π]] = 156799

ăe ideal p115
3 is principal in OQ(π) but not inZ[π,π].

Testing that relation took under four minutes.

A C: Jac(y2 = 2987x5 +1680x4 +3443x3 +1918x2 +2983x+489) over F3499
[OQ(π) :Z[π,π]] = 132 · 37 · 79

Horizontal 3, 5, and 7-isogenies take 1, 3.5, and 5.5 seconds to compute.
Using p5

3p
7
7 = 1 and p10

5 = 1 suffices to conclude.

W C: [OQ(π) :Z[π,π]] = 2 · 3 · 5; slower than other methods.
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N Y: g = 3?!

(Not a chance.)
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