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Abstract

We study endomorphism rings of principally polarized abelian surfaces over finite
fields from a computational viewpoint with a focus on exhaustiveness. In particular, we ad-
dress the cases of non-ordinary and non-simple varieties. For each possible surface type, we
survey known results and, whenever possible, provide improvements and missing results.

1 Introduction
Let A be a principally polarized abelian surface defined over a finite field Fq . Its endomor-

phisms defined over the base field form a ring End
Fq
(A); the corresponding endomorphism

algebraQ⊗End
Fq
(A) is a division algebra with centerQ(π), whereπ denotes the Frobenius

endomorphism. Tate [66] shows that the endomorphism algebra of an abelian variety uniquely
identifies its isogeny class. The ring End(A) of endomorphisms of A defined over the algebraic
closure Fq , which we seek to compute, is sometimes strictly larger than End

Fq
(A) [62, Theo-

rem 2.4]. This ring is an order in the division algebra K =Q⊗End(A) stable under complex
conjugation and containing Z[π,π], whereπ = q/π.

Endomorphism rings of abelian varieties are finer-grained invariants than endomorphism
algebras. Their computation allows one to efficiently partition isogeny classes into smaller com-
ponents, making themhighly relevant to both computational number theory and cryptography,
with numerous applications, including the evaluation of the hardness of the discrete logarithm
problem [34, 11] and the computation of class and modular polynomials [64, 10, 65].

We consider two effective variants of this problem.

Problem 1.1. Given a principally polarized abelian surface defined over a finite field, obtain
an abstract representation of its endomorphism ring, that is, a canonical division algebra (such
asQ[x ]/(x 4 + Ax 2 +B ) in the simple, ordinary case) isomorphic to the endomorphism algebra
together with an explicit subring isomorphic to the endomorphism ring.

Problem 1.2. Given a principally polarized abelian surface defined over a finite field, obtain an
explicit generating set of endomorphisms which can be efficiently evaluated.

Both problems can be related through an explicit embedding K →Q⊗End(A) where K
is a division algebra which depends only on the isogeny class [66]. Here, our efforts focus on
Problem 1.2.

This work was supported by Agence Nationale de la Recherche under grant ANR-20-CE40-0013.
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simple abelian surfaces
p-rank surface type End type Section

2 Jac(C ) O 4.1
1 Jac(C ) O 4.2

non-simple abelian surfaces
p-rank surface type End type Section

2
E1 × E2

E1 and E2 ordinary

�

O1 a

ba O2

�

5.2.3

1
(E1 × E2)/H

E1 ordinary, E2 supersingular, H finite
suborder of O1 ×R2 5.2.2

0
E 2 or E 2/α

with α an α-group

�

R R
R R

�

5.2.1

Table 1: Types of abelian surfaces and associated endomorphism rings, where O denotes an
order in a CM-field,R a maximal order in the quaternion algebraQp,∞, and a is an ideal. See
the relevant sections for details.

Let p denote the characteristic of the base field, such that we have q = p n for some positive
integer n. For an abelian variety of dimension g , the p-torsion of A satisfies A[p] ' (Z/pZ)r
where the integer 0 ¶ r ¶ g is called the p-rank of A and is denoted by r (A). The p-rank is
invariant under isogenies and satisfies r (A×B ) = r (A)+ r (B ) for every pair of abelian varieties
A and B over Fq . Abelian varieties of p-rank g are called ordinary and form the generic case:
the moduli space of ordinary abelian varieties of dimension g has dimension g ( g + 1)/2,
which is also the dimension of the entire moduli space of abelian varieties of dimension g . In
contrast, abelian varieties whose p-rank vanishes are said to be supersingular.

Abelian varieties of dimension g = 1 are known as elliptic curves and are either ordinary
or supersingular. Their endomorphism algebra is an imaginary quadratic field in the ordinary
case and a quaternion algebra in the supersingular case. Computing their endomorphism rings
was first addressed by Kohel [42] who provided explicit algorithms of exponential complexity.
In the ordinary case, this was improved to subexponential-time algorithms by Bisson and
Sutherland [7, 4] and, more recently, to a polynomial-time algorithm by Robert [58]. In the
supersingular case, state-of-the-art algorithms remain of exponential complexity [22, 26, 55].

Abelian varieties of dimension g = 2 are known as abelian surfaces and their p-rank is
either 0, 1, or 2. Abelian surfaces of p-rank 2 form a strata of dimension 3 of the moduli
space; those of p-rank 1 and 0 form a strata of respective dimension 2 and 1, see [28, Theorem
2.3]. Methods for computing their endomorphism rings were designed only in the ordinary
and absolutely simple case, first by Eisenträger and Lauter [23] who described an algorithm
of exponential complexity in log(q ) and later by Bisson [3] who obtained a subexponential
algorithm.

Our contribution. We classify abelian surfaces according to their p-rank and whether they
are absolutely simple. Table 1 enumerates all cases, each of which will be the topic of a specific
section.
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The nature of the results we obtain varies with the type of surfaces. This article’s first
objective is to survey the literature and, whenever possible, to improve upon the state-of-the-
art or to fill in missing details. In particular we prove the existence of a general algorithm to
solve problem 1.2. In the case of simple surfaces of p-rank 1 we show that known methods can
be applied and, in the case of non-simple surfaces, we presents new algorithms to compute the
associated elliptic factors.

Our algorithms vary in efficiency. Nevertheless their existence holds intrinsic value, as they
contribute to a deeper understanding of the landscape and open avenues for further refinement
and exploration.

Section 2 contains preliminaries on representing surfaces and computing basic invariants.
Section 3 answers the problem of theoretical computability of endomorphism rings and, in
particular, of generic endomorphism testing. Section 4 tackles the case of simple surfaces and
discusses the lattice of orders, a classical challenge towards problem 1.2. Section 5 deals with
non-simple surfaces, where the situation demands a more nuanced approach; in particular, we
describe two distinct algorithms to find elliptic subcovers. Section 6 finally considers the par-
ticular case of surfaces with extra automorphisms, where elliptic factors can be explicitly given.

2 Preliminaries

2.1 Representing abelian surfaces and their endomorphisms
Unless otherwise specified, all abelian surfaces are implicitly assumed to be defined over a fi-

nite field and endowed with a principal polarization. We represent them differently depending
on their type as per the following theorem.

Proposition 2.1 ([69, Satz 2]). Every principally polarized abelian surface is either the Jacobian
variety of a genus-two curve or the product of two elliptic curves with the product polarization.

For simple surfaces, we rely on the representation given by the celebrated theorem below.

Theorem 2.2 ([69] and [1, Section 5.10]). Let A be a principally polarized abelian surface
defined over a finite field Fq . If A is simple over the quadratic extension Fq 2 , then A is Fq -
isomorphic to the Jacobian of a projective smooth curve of genus two.

Non-simple surfaces are either:

• isomorphic to a product of isogenous elliptic curves;

• Jacobian varieties of algebraic curves which are not isomorphic to such a product.

The endomorphism ring of a product of two elliptic curves E1 and E2 satisfies

End(E1 × E2) =
�

End(E1) Hom(E2, E1)
Hom(E1, E2) End(E2)

�

and its computation is thus reduced to computing their individual endomorphism rings as well
as an isogeny between them which may be obtained using the methods of [27]. For surfaces A
not isomorphic to such a product, the first step is to identify two elliptic curves E1, E2 and an
isogeny A→ E1 × E2. This is addressed in Section 5.3.

Henceforth, we thus focus on surfaces given as the Jacobian variety of a genus-two curve
for which points can be represented inMumford coordinates [50] and the group law computed
using Cantor’s algorithm [13]. This representation can be extended to non-simple abelian
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surfaces which belong to the isogeny class of a Jacobian variety: such surfaces A can be rep-
resented as a couple (ϕ, C ) whereby ϕ : Jac(C )→ A is an isogeny. Note however that this
representation excludes some non-simple abelian surfaces [30, Theorem 1].

Separable isogenies of simple abelian surfaces and, in particular, their endomorphisms, may
be represented by their kernel since they are finite; from a kernel, the corresponding isogeny
can be efficiently evaluated using Vélu’s formulas [67] and later improvements [2]. Isogenies of
non-simple abelian surfaces are represented more naïvely as algebraic maps given by tuples of
rational fractions.

2.2 Computing basic invariants
Let A = Jac(C ) be the Jacobian variety of a genus-2 hyperelliptic curve C defined over

a finite field Fq where q = p n . Let

fA(t ) = t 4 + a1 t 3 + a2 t 2 + qa1 t + q 2 ∈ Z[t ]

denote the characteristic polynomial of its Frobenius endomorphismπ and set

∆ := a2
1 − 4a2 + 8q , δ := (a2 + 2q )2 − 4qa2

1 .

We can determine whether A is absolutely simple from the coefficients of fA using [32,
Theorem 6]. Moreover, the variety A has p-rank two if and only if p - a2 and∆ is not a square
in Z; it has p-rank one if and only if p - a1, v p (a2) ¾

n
2 ,δ is not a square inZp and∆ is not

a square in Z; see [47, Theorem 2.9].
We note that, alternatively, the p-rank can be determined by looking at the splitting pattern

of p in the CM-field K and by the method of [51].
We will sometimes also use the a-number which is defined as a(A) = dim Hom

Fp
(αp , A)

where αp is the only local-local group scheme over Fp . See [24, Lemma 2.2] for its explicit
computation.

Henceforth, we denote by A ∼ B the fact that the abelian varieties A and B are isogenous.
We denote by R ' R ′ the fact that the groups or algebras R and R ′ are isomorphic.

3 Computability of endomorphism rings
Here we present two generic methods for computing endomorphism rings of abelian

surfaces. They are of theoretical interest merely because they prove their computability in
the general case. However their time complexity are prohibitive and subsequent sections will
present specialized methods which achieve better complexities for each subcase.

3.1 Generic endomorphism testing
We borrow the following definition from [71] and refer the reader to [70] for a more

precise statement.

Definition 3.1. Let ϕ : A → B be an isogeny between two abelian varieties defined over
a finite field Fq . An efficient representation of ϕ with respect to a given algorithm is some data
Dϕ ∈ {0, 1}∗ such that, on input Dϕ and P ∈ A(Fq ), the algorithm returns the evaluation ϕ(P )
in polynomial time in length(Dϕ) and log q .

We denote by α† the Rosati involution of an endomorphism α of an abelian variety A.
This yields a positive definite bilinear form on End(A) defined by 〈α,β〉 = tr(α ◦β†). The
quadratic structure is computationally available thanks to the following lemma.
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Lemma 3.2. Let A be a principally polarized abelian surface. Given two endomorphisms α,β ∈
End(A), an efficient representation of α andβ†, and an integer D such that 〈α,α〉, 〈β,β〉 < D ,
one can compute

〈α,β〉 = tr(α ◦β†)

in polynomial time in the length of the input.

Proof. This is inspired by [56, Lemma 7], which itself follows a strategy similar to Schoof ’s
point counting algorithm. The trace of an endomorphism is the trace of its action on the Tate
module Tℓ (A) for any prime ℓ . Thus the action of α ◦β† on A[ℓ] reveals tr(α ◦β†)mod ℓ .
Since | tr(α◦β†)| ¶ D , it is sufficient to evaluate the action of α◦β† on A[ℓ] for small primes
ℓ such that

∏

ℓ ℓ > 2D , then recover 〈α,β〉 with the Chinese remainder theorem.

Definition 3.3. A good representation for an isogeny ϕ : A→ B is a triple (r , r †, D) where
r is an efficient representation of ϕ, r † is an efficient representation of ϕ† = λ−1

A ◦ ϕ
∨ ◦ λB ,

where λA and λB denote the respective polarizations of A and B , and D is an integer such that
tr(ϕ ◦ϕ†) ¶ D .

Remark 3.4. Let ϕ be an (ℓ , ℓ)-isogeny. Its kernel K ⊂ A[ℓ] is an efficient representation of ϕ.
Furthermore, the (ℓ , ℓ)-isogeny ϕ† has kernel ϕ(A[ℓ]). We deduce that (K ,ϕ(A[ℓ]), ℓ) is a good
representation of ϕ.

Per Lemma 3.2, given a good representation for α,β ∈ End(A), one can compute 〈α,β〉
in polynomial time in the length of the input.

Proposition 3.5. There exists an algorithm which, given a collection of endomorphisms α =
(αi )

n
i=1 ∈ End(A) in good representation, outputs a good representation of a basis of span

Q
(α)∩

End(A). In particular, if α has full rank, the output is a basis of End(A).

Proof. From Lemma 3.2, one can compute the Gram matrix G = (〈αi ,α j 〉)i , j for any collec-
tion α. Up to selecting a subset, we can assume the αi linearly independent, hence G is of
dimension and rank n. Let S = span

Z
(α) and R = span

Q
(α)∩End(A). We have S ⊂ R , and

[R : S ] = vol(S )/vol(R) (where the volume is with respect to the scalar product 〈−,−〉). We
have vol(S )2 = det(G ) ∈ Z, and similarly, vol(R) ∈ Z since 〈−,−〉 is integral on End(A). In
particular, [R : S ]2 is a divisor of det(G ). The algorithm then proceeds as follows. For each
prime ℓ whose square divides det(G ):

(Step 1) Let L ⊂ S be a list of representatives of the finite quotient S/ℓ S .

(Step 2) For eachβ ∈ L, ifβ(A[ℓ]) = 0, then we haveβ/ℓ ∈ R , we find a basis of S +Z ·β,
and update S and G accordingly to correspond to this larger ring. Return to (Step 1)
with the same prime ℓ .

(Step 3) If noβwithβ(A[ℓ]) = 0 was found we have ℓ - [R : S ] (i.e., we have reached maximal-
ity locally at ℓ), return to (Step 1) with the next prime ℓ .

Termination follows from the fact that upon each return to (Step 1), either [R : S ] has been
divided by a factor ℓ (which can only happen finitely many times before reaching [R : S ] = 1),
or one progresses forward in the list of prime factors of det(G ). Correctness follows from the
fact that for each ℓ , one eventually reaches (Step 3), at which point [R : S ] is guaranteed not
be be divisible by ℓ anymore; so once the list of prime factors of det(G ) is exhausted, we get
that [R : S ] has no prime factor, hence [R : S ] = 1.
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Note that, the list L computed in (Step 1) is of exponential length in log(ℓ) and hence
in the input size. Testing whether β(A[ℓ]) = 0 in (Step 2), when done naively, is also of
exponential complexity.

By Proposition 3.5, it only remains to prove that there exists an algorithm that produces
a full-rank collection of endomorphisms of A. One can compute the rank of any collection as
the rank of the Gram matrix. Since the rank of End(A)⊗Q is known, there is an algorithm to
check whether a collection has full rank.

Theorem3.6. There exists an explicit algorithm that, given a principally polarized abelian surface
A defined over a finite field Fq , outputs a basis of its endomorphism ring End

Fq
(A).

Proof. At this point, we are only concerned with showing that End
Fq
(A) is computable, with

no concern for efficiency. We therefore propose the following naïve strategy. Given a principally
polarized abelian surface A, exhaustively enumerate all endomorphisms of A by enumerating
all possible maps (as tuples of rational fractions of increasing degrees) and testing which are
indeed endomorphisms (e.g., testing that themaps indeed send A to itself usingGröbner bases).
This results in a sequence (αi )

n
i=0 such that End

Fq
(A) = {αi }i , and the algorithm generates

each αi in that order.
From any initial sequence (αi )

n
i=0, one can compute the corresponding Gram matrix, and

a basis of the lattice it generates. Themain difficulty is in deciding at which n to stop (i.e., when
span
Z
(αi )

n
i=0 = End

Fq
(A)). This is where Proposition 3.5 comes in: it is sufficient to reach

a point where rk(span
Z
(αi )

n
i=0) = rk(span

Z
(End

Fq
(A))), and the algorithm of Proposition 3.5

takes care of the rest. Thequantity rk(span
Z
(αi )

n
i=0) is the rankof theGrammatrix, computable

by Lemma 3.2. The quantity rk(span
Z
(End

Fq
(A))) is the rank of the endomorphism algebra,

which can be computed in polynomial time.

Note that all endomorphisms are defined over extensions of the base field of bounded
degree [62, Theorem 2.4]. Therefore, to compute the ring End(A) of endomorphisms defined
over the algebraic closure, one only needs to run the above algorithm over a bounded extension
of the base field.

3.2 Lifting to characteristic zero
Several algorithms have been designed for the computation of endomorphism rings of

abelian varieties defined over a field of characteristic zero [12, 18, 44] and have been used
to verify the correctness of the endomorphism data in the L-functions and modular forms
database (LMFDB) [43] which contains 66, 158 curves of genus two with small minimal
absolute discriminant as of February 2025.

Since abelian surfaces of positive p-rank defined over finite fields admit a canonical lift [45],
the computation of the abstract structure of their endomorphism rings may be transported
to characteristic zero. Nevertheless, the computation of such canonical lifts is exponential in
log(p) [59, 46, 60]; furthermore, it is unclear whether characteristic-zero methods for com-
puting endomorphism rings yield better overall complexity than their finite fields counterpart
as we are unaware of rigorous complexity bounds for those methods.

Note that, one could avoid the computation of the canonical lift, by taking any lift of the
curve with extra endomorphisms [52] and thus obtain the right order up to an index a power
of p (see Corollary 6.1.2. in [29]).

Lemma 3.7. Let A be an abelian variety defined over a number field K and p be a prime of good
reduction of norm p . The reduction map ι : End A→ End Ap is injective and [(ι(End A)⊗Q)∩
End Ap : End A] is a power of p .
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Example 3.8. Consider the hyperelliptic curve defined over the field F11 by

C : y 2 = x 6 + 6x 5 + 4x 4 + 2x 3 + 5x 2 + 7x + 2.

Its Frobenius endomorphismπ has characteristic polynomial t 4 + 10t 2 + 121 and we find that
the order Z[π,π] has index 25 in the ring of integers of the quartic field K =Q(π).

A lift of this curve which admits extra endomorphisms is

C ′ : y 2 + x 3 y = x 3 + 2;

which is referenced by LMFDB as “Genus 2 curve 5184.a.46656.1”. The endomorphism ring
of its Jacobian variety is End

Q
(Jac(C ′)) = Z[

p
−2]; thus, the endomorphism ring of Jac(C )

contains the order O = Z[π,π,
p
−2] which has index 2 in the maximal order OK . This reduces

the possibilities for End(Jac(C )) to just two cases: O and OK . By computing (2, 2)-isogenies, we
eliminate the case OK and deduce that End(Jac(C )) = O .

4 Simple abelian surfaces
Simple abelian surfaces are either of p-rank 2 (ordinary) or of p-rank 1.

4.1 Simple, ordinary case
When A is ordinary, its endomorphism algebra K = Q(π) is a quartic CM-field, that

is, an imaginary quadratic extension of a totally real number field K +. The endomorphism
ring End(A) is an order of K containing Z[π,π] and stable under complex conjugation.
Conversely, all such orders are endomorphism rings, see [68]. In particular, the conductor of
End(A) divides the index ν = [OK : Z[π,π]] where OK denotes the ring of integers of K .

Classically, the problem of computing End(A) has been split into two subproblems: first,
to determine whether a given order O is contained in the endomorphism ring End(A); second,
to select suitable candidate orders O so as to determine End(A). The latter is covered in
Section 4.1.2; from a high level perspective, it computes the localization of End(A) locally at
each prime ℓ dividing the conductor ν , from which End(A) is eventually deduced.

4.1.1 Testing candidate orders

Assume a candidate order O of K is fixed and we wish to determine whether O ⊂ End(A)
holds. Depending on the prime ℓ and other factors, we might elect to choose one of the
methods below.

Themethod of Eisenträger–Lauter [23]. This method exploits the following observation:
let α be an endomorphism of A and let ℓ be an integer coprime to p; then we have α/ℓ ∈
End(A) if and only if A[ℓ] ⊂ ker(α) holds. This can be computed efficiently when the ℓ-
torsion subgroup A[ℓ] is defined over relatively small extension fields. Generically, however,
the torsion A[ℓ] may be defined over extensions of degree as large as ℓ g and the primes ℓ
themselves, being factors of ν , are only bounded by 2 g (2 g−1)q g 2/2. This algorithm thus has an
exponential complexity in the worst case.
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The method of Bisson [3]. This approach exploits complex multiplication theory and,
more specifically, the faithful action of the polarized class group C(O ) of Shimura [61] on
the set of isomorphism classes of principally polarized abelian varieties with endomorphism
ring O . The main idea is to construct polarized ideals which are trivial in C(O ), to evaluate
the corresponding isogenies, and to check that those are in fact endomorphisms. When we
have O ⊂ End(A), this is always the case. Conversely, if all principal polarized ideals map
to endomorphisms, one shows [6] that the order O is never “far” from being a suborder of
End(A). Applying the method of Eisenträger–Lauter locally at small primes allows one to
overcome this and obtain a full converse. This yields an algorithm of heuristic, subexponential
complexity to determine whether the inclusion O ⊂ End(A) holds.

An abelian variety A is said to havemaximal real multiplication if its endomorphism ring
End(A) containsOK + . In this particular case, assuming furthermore that the narrow class group
of K + is trivial, Springer [63] improves Bisson’s method by exploiting the classical class group
instead of the polarized class group. This yields an algorithm which relies on fewer heuristics.

The method of Robert [58]. Robert exploits Kani’s diamond lemma [39] to obtain
a polynomial-time algorithm testing whether certain maps of elliptic curve are in fact
endomorphisms. Although it is written in the case of ordinary elliptic curves, there is no
obstacle to its generalization to simple, ordinary abelian surfaces. However, this does not
necessarily give a polynomial-time algorithm for computing endomorphism rings, since this
depends on the number of orders to test, a problem to which we now turn.

4.1.2 Ascending the lattice of orders

The general idea of [3, Algorithm 6.2] is as follows: starting from O ′ = Z[π,π], iterate
over orders O which are directly above O ′ (that is, such that O ′ ⊂ O and no other order strictly
lies between them); ifO ⊂ End(A), then setO ′←O and repeat until there are no more orders
to test; eventually, return End(A) = O ′.

For elliptic curves, the CM-field K is a quadratic CM-field. Locally at any prime ℓ , its
lattice of orders is thus linear and there is only one order to consider above every given one;
this can be efficiently exploited, see [4, Section 5]. Coupled with Robert’s testing method,
this yields a polynomial-time algorithm for computing the endomorphism ring of ordinary
elliptic curves.

In quartic CM-fields, however, there can be exponentially many such orders stable under
complex conjugation. In particular, this is always the case when ℓ3 | [OK : O ]; see [25, Lemma
5.3]. One may try to limit the number of orders to test by first computing the real part of the
endomorphism ring.

Denote byK + themaximal totally real subfield ofK , letO = End(A) and letO+ = O∩OK + .
Note that O+ can be computed in polynomial time, as K + is quadratic and therefore its
lattice of orders is linear locally at each prime ℓ . Let O # be the largest order in OK such that
O # ∩OK + = O+, which exists as a consequence of the following lemma.

Lemma 4.1. For i = 1, 2, let Oi be two suborders of OK stable under complex conjugation such
that Oi ∩OK + = O+. Locally at any prime ℓ 6= 2 we have (O1 +O2)∩OK + = O+.

Proof. Let x ∈ (O1 +O2)∩OK + . We have x = x1 + x2 ∈R with xi ∈ Oi . Thus 2x = x + x̄ =
x1 + x̄1 + x2 + x̄2 ∈ (O1 ∩OK + ) + (O2 ∩OK + ) =O+.

We thus have the inclusions of orders displayed in Figure 1.
However, the result below, which is a generalization of [25, Lemma 5.3], shows that there

are still exponentially many orders within the resulting bounds for End(A).
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OK

O #

O = End(A)

OK + O+[π, π̄]

O+

Figure 1: Inclusions between orders in a quartic CM-field and their intersections with the
totally real subfield.

Lemma4.2. LetK be a quartic CM-field; denote byK + its totally real subfield. LetO be an order
in K stable under complex conjugation σ . Let ℓ be an odd prime. The number of orders which are
stable under complex conjugation, contained in O ∩K + + ℓO and containing O ∩K + + ℓ2O , is
greater than ℓ .

Proof. These orders correspond to submodules over Fℓ [{1,σ}] of (O ∩K ++ℓO )/(O ∩K ++
ℓ2O ). By Maschke’s theorem, Fℓ [{1,σ}] is semisimple: it admits two absolutely irreducible
modules, V+ and V−, each of dimension one over Fℓ . Thus, the quotient above is isomorphic
to V n+

+ ⊕V n−
− where n+ and n− are non-negative integers whose sum equals the dimension of

the quotient, that is, two. Since the action of σ on V− is nontrivial and it stabilizes the direct
sum, the integer n− is even. Thus, one of n+ or n− equals two and the corresponding module
V n has ℓ2−1

ℓ−1 = ℓ + 1 submodules.

We conclude that classical methods for computing the endomorphism rings by ascending
the lattice of orders cannot have subexponential worst-case complexity in the general case.

4.2 Simple, p -rank-1 case
Recall that p-rank-1 abelian surfaces may be efficiently detected via the following result.

Lemma 4.3 ([51, Lemma 1]). A simple abelian surface A defined over Fq , with q = p n , has
p-rank 1 if and only if the following conditions are satisfied:

1. the field K =Q(π) is a quartic CM-field,

2. the prime p splits in K as pOK = p1p1p
e
2, where e ∈ {1, 2}, and

3. we haveπOK = p
n
1p

e n/2
2 , with e as in Condition (2).

In particular, endomorphism rings of p-rank-1 surfaces are specific orders among those
of ordinary surfaces. The techniques of Section 4.1.2 therefore apply equally to the case of
p-rank-1 surfaces.

To compute the endomorphism rings, these techniques may be coupled with the method
of Eisenträger and Lauter [23] or even of Bisson [3]. Indeed, by the theory of Shimura and
Taniyama [61], isogenies between p-rank-1 surfaces correspond to ideals of orders of the
endomorphism algebra. Since this algebra is of the same type as those of ordinary surfaces,
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the free action of [3, Section 2], the endomorphism ring testing routine of [3, Section 5], the
resulting method [3, Algorithm 6.2], the main result [3, Theorem 7.1] and its proof all apply
without and modification to abelian surfaces of p-rank-1.

Example 4.4. Consider the Jacobian variety A of the genus-two curve

y 2 = 23535x 6 + 6448x 5 + 20387x 4 + 3811x 3 + 11376x 2 + 11282x + 21340

defined over the finite field with 36877 elements. It is absolutely simple, has p-rank 1, and
satisfies [OK : Z[π,π]] = 431 with the 431-torsion of A being defined over an extension of degree
5003910. In the ring of integers of K , we have 3 = aa where a is a prime ideal of norm 9. The
element (a, 3) is of order 736 in the polarized class group C(OK ) but not in C(Z[π,π]). We
compute the sequence of 736 isogenies of type (3, 3) corresponding to the ideal a and land on the
Jacobian variety of a genus-two curve whose invariants are different to that of A. Hence we deduce
End(A) ( OK and therefore End(A) = Z[π,π]. The AVIsogenies Magma package [5] performs
this computation in just about three minutes overall on a single Intel i5-8365U CPU core.

5 Non-simple abelian surfaces
The endomorphism algebra of non-simple abelian surfaces has dimension greater than

4. SinceQ(π, π̄) has only dimension 1 or 2, the strategy consisting in ascending the lattice
of orders described previously does not apply, which is why we rely on the more explicit
results below.

5.1 Using coprime isogenies
Suppose we want to compute a basis of End(A). In this section, we prove that this prob-

lem reduces to computing the endomorphism rings of two other abelian surfaces B and C
connected to A by isogenies of coprime degrees. One could thus compute random isogenies
from A with codomain two abelian varieties B and C of which the endomorphism rings are
known or simpler to compute.

Proposition 5.1. Suppose we are given a good representation of isogenies ϕ : A → B and
ψ : A → C of coprime degrees, of their duals, and of a basis of End(B ) and End(C ). Then,
one can compute a good representation of a basis of End(A) in polynomial time in the length of
the input.

Proof. Recall that, for any isogenyψ : A→ B , there is unique isogeny bψ : B → A such that
ψ bψ = [deg(ψ))].

Let (ηi )i ⊂ End(B ) and (νi )i ⊂ End(C ) be the provided bases. Letβi = bϕ ◦ ηi ◦ϕ, and
γi = bψ ◦ νi ◦ψ. The lattices in End(A) generated by (βi )i and (γi )i areΛB = bϕ ◦End(B ) ◦ϕ
and ΛC = bψ ◦ End(C ) ◦ ψ respectively. We have deg(ϕ)2 End(A) ⊂ ΛB ⊂ End(A), and
deg(ψ)2 End(A) ⊂ ΛC ⊂ End(A). We deduce that [End(A) : ΛB ] and [End(A) : ΛC ] are
coprime, since deg(ϕ) and deg(ψ) are. This implies ΛB + ΛC = End(A), hence End(A) is
generated by the union of (βi )i and (γi )i . From Lemma 3.2, we can compute the Gram matrix
of this generating set, from which we deduce a basis.

Sometimes we will not have such coprime degree isogenies at our disposal, for instance in
the p-rank 0 and a-number 1 case. Nevertheless, in the case of non-simple varieties, we may
use the following well-known results.
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Lemma5.2. Let s1 : A→ B and s2 : A→ C be isogenies. There exists a third isogeny s3 : C → B
such that s1 = s3 s2 if and only if ker(s2) ⊂ ker(s1).

Corollary 5.3. Let s1 : A → B and s3 : C → B be isogenies. There exists a third isogeny
s2 : A→ C such that s1 = s3 s2 if and only if ker(bs3) ⊂ ker(bs1).

5.2 Structure of the endomorphism algebra
Recall that an abelian variety A is non simple if and only if it is isogenous to a product of

elliptic curves over the algebraic closure. The non-simplicity of A can be detected by computing
the characteristic polynomial fA of its Frobenius endomorphism [32, Theorem 6] and so the
isogeny classes of the elliptic factors follow.

There are three possibilities to consider for the p-rank: 0, 1, and 2. The p-rank can be
computed as described in Section 4 via [47, Theorem 2.9].

5.2.1 p -rank-0 case

Recall the following result from Oort.

Proposition 5.4 ([53, Theorem 4.2]). For any given three supersingular elliptic curves E , E1, E2
defined over an algebraically closed field, there is an isogeny E 2 ∼ E1 × E2.

Fix E a supersingular elliptic curve. Following Oort [54], for every (i , j ) ∈ F2
p , we denote

by Ai , j the abelian surface defined over Fp through the following diagram:

0→ αp
(i , j )
−−→ E × E → Ai , j → 0.

In the p-rank-0 case, there are two possibilities for the a-number: 1 and 2.

Proposition 5.5 ([31, Proposition 11.1], restating results from [54]). Let A be an abelian
surface of p-rank 0. We have a(A) = 2 if and only if A ' E × E . We have a(A) = 1 if and only if
A ' Ai j for some [i : j ] ∈ P1(Fp ) \P1(Fp2 ). Furthermore, if a(A) = 1 then a(A/αp ) = 2.

As a consequence, in the p-rank 0 case, the endomorphism algebra is isomorphic to
M2(Bp,∞). In particular, in the a-number 2 case we can solve Problem 1.1 since we have
End(E × E ) 'M2(R) where R is any maximal order in the quaternion algebraBp,∞. The
computational difficulty here is to find an explicit isomorphism or isogeny from A to E × E .
We will address this problem in Section 5.3.

For the remainder of this section, we address the problem of explicitly computing en-
domorphisms in the a-number 1 case. Let A = Ai , j ∼ (E × E )/(i , j )(αp ) and denote by
ϕ : E × E → A the corresponding isogeny. We have

p ·End(E × E ) ⊂ End(A) ⊂ 1
p

End(E × E )

whereβ ∈ End(E × E ) goes to 1
pϕ ◦β ◦ϕ

−1 and γ ∈ End(A) goes to 1
pϕ
−1 ◦ γ ◦ϕ.

Given
�

x y
z w

�

∈ End(E ×E )wewant to determinewhether it is of the form 1
pϕ
−1◦γ ◦ϕ

for some γ ∈ End(A). To this extent, we use the Lemma 5.2 together with the following result.
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Lemma 5.6. If x is an endomorphism, denote by bx its dual and let |x | = x ◦bx and tr(x ) = x +bx .
Given x , y , w and z four elements of End(E ), we have

�

x y
z w

��

bx |w | − bz wby bz |y | − bx y bw
by |z | − bw zbx bw |x | −by xbz

�

=
�

|x ||w |+ |y ||z | − tr(xbz wby )
�

�

1 0
0 1

�

.

Theorem5.7. Let A be an abelian surface of p-rank 0 and a-number 1. Its endomorphism ring is

End(A) '
( 

x − i
j x + uπ

z − i
j z + vπ

!

: x , z , u, v ∈ End(E )
)

.

where the fraction i
j denotes the corresponding integer modulo p .

Proof. Let m =
�

x y
z w

�

∈ End(E × E ). We know that m ∈ End(A) if and only if kerϕ ⊂

ker m and

ker(ϕ) ⊂ ker
�

bx |w | − bz wby bz |y | − bx y bw
by |z | − bw zbx bw |x | −by xbz

�

.

Applying Lemma 5.2 to s1 = m and s2 = ϕ, the first condition implies that y and w are of
the form

y = − i
j

x + uπ and w = − i
j

z + vπ

for some endomorphisms u and v . Then we haveby = − i
j bx +V bu = − i

j bx + u ′V . Similarly, we
have bw = − i

j bz + v ′V . Therefore, the second condition always holds if the first one does.

5.2.2 p -rank-1 case

First of all, let us recall that if an abelian surface decomposes as a product of an ordinary
and a supersingular elliptic curve, this decomposition occurs on the base field.

Corollary 5.8 ([32] and [47, Corollary 2.17]). If an abelian surface A defined over Fq decom-
poses over Fq as the product of two elliptic curves, one supersingular, the other ordinary, then A
decomposes over the base field Fq .

The following result describes the algebra and the endomorphism ring in the case of p-
rank 1.

Proposition 5.9. Let A/Fq be a non-simple abelian surface of p-rank 1. It is isomorphic to
a quotient (E1 × E2)/H where E1 is an ordinary elliptic curve, E2 is a supersingular one, and H
is a finite subgroup. In other words, we have an exact sequence

1→ H → E1 × E2
ϕ
→ A→ 1

which gives an isomorphism of endomorphism algebras

Q⊗End(A) 'Q⊗ (End(E1)×End(E2)) .

More precisely, the endomorphism ring End(A) is the suborder of End(E1)×End(E2)made of
elements s such that H ⊂ ker s .

12



Proof. The decomposition of the characteristic polynomial of the Frobenius endomorphism
implies that we have an isogeny A ∼ (E1×E2)/H where E1 is an ordinary elliptic curve and E2
is a supersingular one. The rest of the statement follows naturally from the exact sequence.

As in the previous case, the computational difficulty is finding an isogeny between A and
E1 × E2; see Section 5.3.

5.2.3 p -rank-2 case

In this case, the surface A decomposes over the algebraic closure as the product of two
ordinary elliptic curves.

Proposition 5.10 ([37]). Non-simple abelian surfaces A/Fq of p-rank 2 are isomorphic to
a product E1 × E2 of two ordinary elliptic curves and their endomorphism ring is isomorphic to

�

End(E1) Hom(E2, E1)
Hom(E1, E2) End(E2)

�

.

When A is the Jacobian variety of a genus-two curve and has p-rank 2, it is an indecom-
posable variety and, therefore, admits a principal polarization different from the product one.
Therefore, in this case, we have Hom(E1, E2) 6= 0.

Remark 5.11. Since E1 and E2 are ordinary, computingHom(E1, E2) reduces to the isogeny path
problem. Indeed, if End(E1) = End(E2), computing Hom(E1, E2) is equivalent to computing the
ideal class of the class group corresponding to isogenies from E1 to E2. If End(E1) 6= End(E2), one
would first compute vertical isogenies from each Ei to an elliptic curve E ′i with endomorphism ring
End(E1) +End(E2) and the problem is then reduced to the previous case.

5.3 Computing elliptic factors
Let A = Jac(C ) be the Jacobian variety of a genus-two curve defined over a finite field Fq .

In this section, all results are stated over the algebraic closure Fq for simplicity; they can be
exploited effectively by working on the base field and then extending it as necessary : as already
mentioned, all endomorphisms are defined over extensions of the base field of bounded degree
[62, Theorem 2.4].

When A is non-simple, we look for its elliptic factors as elliptic subcovers, following the
work of Kani [35, 39, 38, 36].

Suppose that C admits a non-constant morphism f : C → E to an elliptic curve E . If f
does not factor over an isogeny of E , then we say that f is an elliptic subcover of C . Note that
this last condition imposes no essential restriction since every nonconstant f : C → E factors
over a unique elliptic subcover.

A classical theorem due to Picard [57] and Bolza [9] states that a curve C of genus two
has either none, two or infinitely many elliptic subcovers. This is in part due to the fact that
the elliptic subcovers occur in pairs: given an elliptic subcover f : C → E , there is a canonical
“complementary” elliptic subcover f ′ : C → E ′ of the same degree deg( f ) = deg( f ′) such
that the induced maps on the associated Jacobian varieties fit into an exact sequence

0→ Jac(E )
f∗−→ Jac(C )

f ′∗−→ Jac(E ′)→ 0.

Proposition 5.12. Let A be a non-simple Jacobian variety of dimension 2. There exists an (n, n)-
isogeny, preserving the polarization, to a product of elliptic curves with the product polarization.

13



The case in which C has infinitely many elliptic subcovers happens precisely when the
Jacobian of C is Fq -isogenous to E 2, for some elliptic curve E /Fq . In particular, in the non-
simple p-rank 1 case the eliptic curves E1 and E2 and the group H in Proposition 5.9 are
uniquely determined and the isogeny A→ E1 × E2 is an (n, n)-isogeny.

5.3.1 Bounding the degree and the field of definition of the subcover

A bound on the degree of the isogeny may be derived from the following results.

Theorem 5.13. Let (A,λA) be a principally polarized abelian surface, denote by NS(A,λA) its
Néro-Severi group and let n be an integer. We have a one–to–one correspondence between

• the set of all elliptic subcovers E of A of degree n = deg(E ), and

• the set of primitive classes [D] ∈NS(A,λA) with invariant∆(D) = n2

given by the embedding E → [E ] ∈NS(A,λA).

For all D ∈NS(A,λA), set q(A,λA)
(D) = (D .λA)

2 − 2(D .D).

Theorem 5.14 ([38, Theorem 2]). The curve C /Fq has an elliptic subcover of degree n if and
only if the refined Humbert invariant qJac(C ) primitively represents n2.

Kani focuses on computing qJac(C ) given (E , E ′, deg( f )) and on computing how many
curves correspond to a given triple (E , E ′, deg( f )). We are instead interested in the opposite
direction: given C , compute the triples (E , E ′, deg( f )), the Humbert invariant qC or simply
bounding deg( f ). Unfortunately, we are unaware of an efficient algorithm to compute qJac(C ).
See for example [41] for a discussion on how such an efficient algorithm could be use to break
different isogeny based post-quantum cryptosystems.

A bound on the fields of definition follows from a bound on deg( f ).

Proposition 5.15. LetC /Fq be a genus-two curve and denote by A = Jac(C ) its Jacobian variety.
Let ϕ : A→ B be a separable (n, n)-isogeny. Then B is a principally polarized abelian variety
defined over Fq r where

r = n3 ∏

ℓ prime
ℓ |n

1
ℓ3
(ℓ + 1)(ℓ2 + 1)

and the isogeny ϕ is defined over Fq s with s = w r where w = # Aut(C ).

Proof. The kernel of a separable (n, n)-isogeny is a maximal isotropic subgroup of A[n], and
hence B is naturally equipped with a principal polarization [21, Proposition 2.1]. The value
of r follows from counting the number of maximal isotropic groups in A[n]. The value of s
is obtained by counting automorphisms of A preserving the polarization, which is equal to
# Aut(C ) because C is hyperelliptic.

Remark 5.16. If B ∼ E1 × E2 with the product polarization then Ei are defined over Fq 2r .

We now give two methods to obtain elliptic subcovers of a given Jacobian varietity of
a genus-two curve.
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5.3.2 First method: finding (n , n )-isogenies to a product of elliptic curves

According to Proposition 5.12, in the non-simple case there are (n, n)-isogenies from A
to a product of elliptic curves with the product polarization. Since (n, n)-isogenies can be
computed efficiently [17, 5, 49, 15], we obtain the following algorithm.

Algorithm 5.17 (Finding (n, n)-isogenies).
Input: A curve C of genus two with non-simple Jacobian variety.

Output: An elliptic factor.

1. Set n← 2.
2. Compute the torsion subgroup Jac(C )[n].
3. For all maximal isotropic subgroups of Jac(C )[n]:
4. Compute the corresponding (n, n)-isogeny Jac(C )→ B .
5. If B splits:
6. Return its elliptic factor.
7. Set n← n + 1 and go back to Step 2.

For Step 5, see for example [16]. This algorithm terminates and a bound on its runtime
may be derived from Section 5.3.1.

5.3.3 Secondmethod: computing regular differentials

Let C : y 2 = F (x ) be a genus-two curve. Assume that there is an elliptic curve E :
v 2 = u3 + a u + b and a map C → E given by (x , y ) 7→ (u, v ) = ( f (x , y ), g (x , y )) =
( f1(x ) + y f2(x ), g1(x ) + y g2(x )). We necessarily have g (x , y )2 = f (x , y )3 + a f (x , y ) + b
modulo the equation of C . This implies

(

g 2
1 + F g 2

2 = b + a f1 + f 3
1 + 3 f1 f 2

2 F,

2 g1 g2 = a f2 + 3 f 2
1 f2 + f 3

2 F.
(1)

Using the ideas of [20, Section 6.2], we notice that the pushforward of a regular differential of
E has to be regular differential of C and hence a linear combination of d x

y and x d x
y . This gives:

(

F (2 f ′2 + f2) = 2 g1(αx +β),

2 f ′1 = 2 g2(αx +β).
(2)

From which, generically, that is, if α 6= 0, we obtain g2 =
f ′1

αx+β for a choice of linear factor

of f ′1 and g1 =
F (2 f ′2 + f2)
2(αx+β) for a choice of f2 such that αx +β | F (2 f ′2 + f2). Together with

Equation (1), this implies deg( f1) = deg( f2) + 3, generically.
We thus obtain the following algorithm.
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Algorithm 5.18 (Exploiting regular differentials).
Input: A curve C : y 2 = F (x ) of genus two with non-simple Jacobian variety.

Output: An elliptic factor.

1. Set d ← 1.
v 2. Let w and r be as in Proposition 5.15.
2. For all f1 ∈ Fq w r [x ] of degree d + 3:
3. For all linear factors t of its derivative f ′1 :
4. For all f2 ∈ Fq 2r [x ] of degree d such that t | F (2 f ′2 + f2):
5. Let g1 =

F (2 f ′2 + f2)
2t and g2 =

f ′1
t .

6. If Equation (1) is satisfied, return the elliptic factor.
7. Set d ← d + 1 and go back to Step 2.

5.4 Supersingular case
The methods of the previous sections apply also to this case with n = p , the characteristic

of the base field. It may however be unpractical to compute (p, p)-isogenies. We now provide
an alternative method based on random walk techniques which may also be adapted to other
settings where the isogeny graph has the rapid mixing property.

Proposition 5.19. There is an algorithm that on input two supersingular elliptic curves E1 and
E2 over Fp2 outputs a basis of End(E1 × E2) in expected time

pp(log p)O(1).

Proof. From [55, Theorem 8.8], there is an algorithm which finds bases of End(E1) and
End(E2) in time Õ(pp). Within that same running time, one can compute an isogeny
ϕ : E1 → E2 of degree 2e for some e ∈ N in efficient representation (see, for instance, [55,
Proposition 8.7]; that is simply a baby-step giant-step resolution of the 2-isogeny path problem).
We can ensure that ϕ has cyclic kernel, i.e., it is a non-backtracking path in the 2-isogeny graph
(by greedily pruning backtracking sub-paths).

Then, one can compute in polynomial time a basis of the ideal I =Hom(E2, E1) ◦ϕ ⊂
End(E1) as follows. This ideal consists in all endomorphisms α such that degϕ divides α ◦ bϕ,
i.e. such that (α ◦ bϕ)(E1[2e ]) = 0. Let

Ii = I + 2i End(E1) =
�

α ∈ End(E1) | 2
i divides α ◦ bϕ

	

,

so that I0 = End(E1) and Ie = I . We compute Ii iteratively as follows:

1. Let I0 = End(E1).

2. For each 0 ¶ i < e , compute Ii+1 =
¦

α ∈ Ii |
α◦bϕ

2i (E1[2]) = 0
©

, the division α◦bϕ
2i being

evaluated iteratively by [48, Theorem 3].

We then have a basis of Hom(E2, E1) = (I ◦ bϕ)/[degϕ]. Similarly, we have a basis of
Hom(E1, E2). We conclude from the fact that

End(E1 × E2) =
�

End(E1) Hom(E2, E1)
Hom(E1, E2) End(E2)

�

.

Corollary 5.20. Assuming that [19, Hypothesis 1] holds, there is an algorithm that on input
a superspecial Jacobian A over Fp2 outputs a basis of End(A) in expected time p(log p)O(1).
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Proof. For ℓ ∈ {2, 3}, assuming that [19, Hypothesis 1] holds, there is a bound n =O(log(p))
such that a random pathϕℓ : A→ Bℓ of length n in the (ℓ , ℓ)-isogeny graph reaches a target B
that is close to uniformly distributed in the set of superspecial abelian surfaces over Fp2 . Then
Bℓ is a product E1 × E2 with probabilityΩ(p−1). Therefore, one can find such isogenies ϕ2
andϕ3 in time p(log p)O(1) from A to products of elliptic curves B2 and B3. One can compute
End(Bℓ ) within the claimed running time with Proposition 5.19, and, deduce End(A) with
Proposition 5.1

6 Surfaces with extra automorphisms
When the curve C admits automorphisms other than ± id, finding a decomposition of its

Jacobian variety Jac(C ) is easier as the following result shows.

Theorem 6.1 ([40, Theorem B]). Let C be a curve and let G be a finite subgroup of the auto-
morphism group Aut(C ) such that G = H1 ∪ · · · ∪Hn , where the Hi ’s are subgroups of G with
Hi ∩H j = {id} for i 6= j . Then we have an isogeny

Jac(C )n−1 × Jac(C /G ) g ∼ Jac(C /H1)
h1 × · · · × Jac(C /Hn)

hn

where g = |G |, hi = |Hi | andC /G , C /H1,…, C /Hn denote the curves obtained by quotienting
C by the subgroups G , H1, . . . , Hn respectively.

In the specific case of genus-two curves, we have the more explicit statement below.

Theorem 6.2 ([33, Theorem 2]). Assume that the polynomial f (x ) factors completely over the
finite field Fq , i.e.

f (x ) = c
6
∏

i=1
(x − ai )

with ai ∈ Fq and ai 6= a j when i 6= j . Assume that

(a2 − a4)(a1 − a6)(a3 − a5) = (a2 − a6)(a1 − a5)(a3 − a4).

and set

λ =
(a1 − a3)(a2 − a4)
(a2 − a3)(a1 − a4)

, µ =
(a1 − a3)(a2 − a5)
(a2 − a3)(a1 − a5)

, and

θ = c (a2 − a3)(a1 − a4)(a1 − a5)(a1 − a6).

Assumemoreover that there exists a square root of λ(λ−µ) in the finite fieldFq . Then the Jacobian
of the hyperelliptic curve C : y 2 = f (x ) decomposes over Fq as

Jac(C ) ∼ E+ × E−

where E+ and E− are the elliptic curves defined by the equations

y 2 =
θ(1−µ)

1− λ
x (x − 1)

 

x −
(1− λ)

�

µ− 2λ± 2
p

λ(λ−µ)
�

µ− 1

!

.

We now consider each specific case depending on the automorphism group type. For each
such type, Table 2 gives the associated family of genus-two curves; see [14] and [8] for details.
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Aut(C ) Family
C2 ×C5 y 2 = x 5 − 1

S̃4 y 2 = x 5 − x
2D12 y 2 = x 6 − 1
D12 y 2 = x 6 + t x 3 + 1
D8 y 2 = x 5 + t x 3 + x
V4 y 2 = x 6 + t x 4 + s x 2 + 1

Table 2: List of genus-two curves with extra automorphisms.

6.1 Automorphism groups admitting a subgroup of type V4

Except for those with automorphism group C2 ×C5, all families in the table above are
specializations of the family of curves

Ct ,s : y 2 = x 6 + t x 4 + s x 2 + 1

over a finite fieldFp with p odd. Thequotient by the automorphism (x , y ) 7→ (−x , y )produces
the degreee-two morphism

φ :
¨

Ct ,s −→ Et ,s : v 2 = u3 + t u2 + s u + 1
(x , y ) 7−→ (u, v ) = (x 2, y ).

The complementary elliptic subcover of degree two is

φ′ :
¨

Ct ,s −→ Es ,t : v 2 = u3 + s u2 + t u + 1
(x , y ) 7−→ (u, v ) = (1/x 2, y/x 3),

which can also be described as the quotient of Ct ,s by the automorphism (x , y ) 7→ (−x ,−y ).
These two covers produce a (2, 2)-isogeny

Φ =φ∗×φ′∗ :







Et ,s × Es ,t −→ Jac(Ct ,s )
(P −∞, Q −∞) 7−→

∑

R∈φ−1(P )
R −

∑

R∈φ−1(∞)
R +

∑

R∈φ′−1(Q )
R −

∑

R∈φ′−1(∞)
R ,

whose kernel is contained in (Et ,s ×Es ,t )[2]. Write u3+ t u2+ s u+1 = (u−α1)(u−α2)(u−
α3). Then u3 + s u2 + t u + 1 = (u − 1

α1
)(u − 1

α2
)(u − 1

α3
). Set P ±i = (±

p
αi , 0), so that

φ−1((αi , 0)) = P +i −∞ + P −i −∞. Under the usual identification of E with its Jacobian
variety, the kernel of Φ is

{∞×∞}∪
�

(αi , 0)×
�

1
αi

, 0
�

: i ∈ {1, 2, 3}
�

.

Indeed, we have Φ
�

(αi , 0)×
�

1
αi

, 0
��

= div(x 2 −αi ) = 0.

Remark 6.3. The elliptic curves Et ,s and Es ,t are in general not isogenous to each other.
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We can now use the results of Section 5.1 to determine the endomorphism ring of Jac(C ).
Consider the dual (2, 2)-isogeny bΦ : Jac(Ct ,s )→ Et ,s × Es ,t . It allows us to bound the endo-
morphism ring from above and below as follows

2 End
�

Et ,s × Es ,t
�

⊂ End
�

Jac(Ct ,s )
�

⊂ 1
2

End
�

Et ,s × Es ,t
�

where the inclusions are given by the maps:
¨

2 End(Et ,s × Es ,t ) −→ Jac
�

Ct ,s
�

2ψ 7−→ Φ ◦ψ ◦ bΦ
¨

End
�

Jac(Ct ,s )
�

−→ 1
2 End

�

Et ,s × Es ,t
�

ϕ 7−→ 1
2
bΦ ◦ϕ ◦Φ

In order to finally identify End(Jac(Ct ,s )) among orders which satisfy those bounds, we
check which elements 1

2ψ ∈
1
2 End

�

Et ,s × Es ,t
�

can be written as 1
2
bΦ ◦ϕ ◦Φ, that is, when

ψ = bΦ ◦ϕ ◦Φ.

6.2 Automorphism type C2 ×C5

To conclude this section, we focus on the remaining case of the curve C : y 2 = x 5 − 1
defined over a finite field Fp with p 6= 2, 5.

We clearly have the inclusion Z[ζ5] ⊂ End(Jac(C )). In the simple case, that is, when p
is totally split in Z[ζ5], this is an equality. In the non-simple case, we can use the results of
Section 5.1 since thanks to [72, Theorem 1.2] we do know the p-rank and the a-number of
the Jacobian variety.
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