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Abstract

Hyperelliptic curve cryptography (HECC) is a candidate to standardization which
is a competitive alternative to elliptic curve cryptography (ECC). We extend Regev’s
algorithm to this setting. For genus-two curves relevant to cryptography, this yields
a quantum attack up to nine times faster than the state-of-the-art. This implies that
HECC is slightly weaker than ECC. In a more theoretical direction, we show that Regev’s
algorithm obtains its full speedup with respect to Shor’s when the genus is high, a setting
which is already known to be inadequate for cryptography.

1 Introduction
Hyperelliptic curve cryptography (see [Kob89]) is a competitive alternative to elliptic

curve cryptography. The two receive equal attention in research works (see e.g. [CFA+05]). At
a given security level, both require the same signature size and have implementations of similar
cost (see e.g. [BS]). The fastest known classical attacks on those cryptosystems have the same
cost up to a very narrowdifference (see e.g. [BCM14b]) and the same number of quantum gates
is required to implement Shor’s attack (see e.g. [CGHZ23]). NIST standardized elliptic curve
cryptography in 1999 (see [NIST99]) and bought patents on hyperelliptic curve cryptography
to stimulate research. Note also that pairing-based cryptography provides advanced primitives
which can be based on hyperelliptic curves; see e.g. [KT08, FS11, Dry12, AFK24].

Hyperelliptic curves have a geometric invariant called the genus, which is a positive integer
g ; elliptic curves form the particular case where g = 1. The Jacobian variety of a hyperelliptic
curve defined over a field is an abelian group. Pollard’s rho algorithm runs in Õ(Q 1/2) time
where Q is the group order; it is the fastest known classical algorithm for solving the discrete
logarithm problem (DLP) in Jacobian varieties of genus-one and -two hyperelliptic curves.
Such curves are thus suitable candidates for cryptographic use. When the genus is three or
more, the index calculus algorithm has a better complexity which remains exponential for
small genera (see [Gau00]) and becomes subexponential for large genera (see [ADH94]).

Turning to quantum attacks, Shor’s algorithm has variants for integer factorization and
DLP in various groups. No practical implementation of Shor’s algorithm at more than 20
bits of security has been publicly announced although this could conceivably be achieved in
the coming years. In this spirit, it is important to identify cases where Shor’s algorithm can
be implemented with as few quantum resources as possible at a given security level. Indeed,
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as record attacks are made on specific problems, they help us extrapolate the cost of applying
Shor’s algorithm to other instances. For example, it is much harder to properly estimate the
cost of integer factoring using Shor’s algorithm than to extrapolate the cost of solving DLP
on elliptic curves from that of integer factoring. Therefore we seek to estimate the precise
cost of quantum attacks on all hyperelliptic curves, including those of genus three and more,
although they are not directly used in cryptography. Indeed, a polynomial difference between
two instances of the discrete logarithm problem cannot constitute a security guarantee.

In 2023, Regev [Reg23] proposed a quantum algorithm with a better complexity than
Shor’s. It was initially designed for integer factoring but was later extended to computingDLP’s
in themultiplicative groupof finite fields [EG24] and in elliptic curves [BBP24]. Pilatte [Pil24]
proved the correctness of all variants except for elliptic curves, where it relies on a series of
conjectures from number theory.

In this paper, we extend Regev’s algorithm to Jacobian varieties of hyperelliptic curves of
arbitrary genus g ; we show that it offers a significant speedup to attack the discrete logarithm
problem compared to Shor’s algorithm. This speedup grows with the genus and is already
significant for g = 2.

Roadmap. In Section 2, we extend Regev’s algorithm to Jacobian varieties of hyperelliptic
curves of arbitrary genus g . In Section 3, we prove, under a heuristic assumption, that Regev’s
algorithmprovides aminimum speedup ofmin( g ,

p
n)with respect to Shor’s, where n denotes

the bit size of the group order. In Section 4, we treat the specific case where g = 2 and we
show that the actual speedup is greater than the minimum value of two: for specific curves
relevant to cryptography, we obtain a speedup of nine. This is possible by extending the strategy
of [BBP24]. Finally, in Section 5, we discuss how the heuristic assumption may be eliminated
for large genera.

2 Extending Regev’s algorithm

2.1 Hyperelliptic curves
Ahyperelliptic curve H is an algebraic curve given by an equation of the form y 2+h(x )y =

f (x ) for two polynomials h and f such that deg h < deg f . Here, we briefly state results
needed in this article and refer the reader to [CFA+05] for most proofs. Such a curve H has
a unique non-affine point which we denote by∞. The genus of H is the integer g such that
deg f = 2 g + 1 or 2 g + 2. In particular, an elliptic curve is a hyperelliptic curve of genus
g = 1. If h and f have coefficients in a field K of which L is an extension, then H (L) denotes
the group of L-rational points on H . By the Hasse–Weil theorem, when L is the finite field Fq
of cardinality q , we have

�

�

�#H (Fq )− (q + 1)
�

�

� ¶ 2 gpq .

The Jacobian variety JacL(H ) is an abelian group which we simply write as Jac(H ) in the
case when L = K . The Mordell–Weil theorem states that, when L is a number field, we
have JacL(H ) ' T ×Zr for some finite group T and some integer r called the rank. When
L = K = Fq , an extension of the Hasse–Weil theorem above (see [CFA+05, th. 14.15]) yields

# Jac(H ) ∈
�

(pq − 1)2 g , (pq + 1)2 g � .

The divisor representation of a point on JacL(H ) is an expression of the form D = x1P1 +
· · ·+ xk Pk where x1, . . . , xn are integers and P1, . . . , Pk are points of H (L). A divisor represen-
tation is reduced if it is of the form D = P1+ · · ·+Pr − r (∞)with r ¶ g where no point Pi is
the opposite of another. Any point of JacL(H ) admits a unique reduced divisor representation.
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TheMumford representation of a point of JacL(H ) is a couple (u, v ) ∈ L[x ] such that
v 2 + v h − f is a multiple of u . A Mumford representation is reduced if deg v ¶ deg u ¶ g .
Given the reduced divisor representation of a point of the Jacobian, one can compute the
reducedMumford representation via the CRT algorithm (see [CFA+05, Sec 14.3.2]) whose
complexity is O( g (log g )2) (see [vzGG03, Sec 10.2]).

Cantor’s algorithm [Can87] computes the addition of two points in reducedMumford
representation; it proceeds in two steps: the composition, which produces a non-reduced
representation of the sum, and the reduction, which outputs an equivalent reduced Mumford
representation. Both steps use O( g log g ) operations in Fq assuming q ¾ g as is always the
case in cryptography.

By [HvdH21], the binary cost of computing multiplications in Fq is O(q log q ). Since
the binary size n of the order of the Jacobian variety of a hyperelliptic curve H satisfies n =
log2 | Jac(H )| ∼ g log2 q by the Hasse–Weil bound, we deduce that computing its addition
law takes O(n(log n)3) binary operations.

2.2 Regev’s algorithm in a nutshell
Consider an abelian group G using additive notation. Given two group elements a and b ,

the discrete logarithm problem consists in finding an integer x such that a = [x ]b . To achieve
this, Shor’s algorithm computes, in quantum superposition, [z ]b for all n-bit integers z , where
n is the bit size of the order ofG . Regev’s algorithm evaluates, also in superposition, expressions
of the form [z1]b1 + · · · + [zd ]bd where d is a parameter to be optimized, the coefficients
z1, . . . , zd are n/d -bit integers, bd = b , bd−1 = a and the bi ’s are carefully-selected elements
of G for 1 ¶ i ¶ d − 2.

The improved complexity relies on two new ideas. Firstly, there exists a linear combination
which sums to 0 and whose coefficients are n/d -bit integers. The idea is natural because
the lattice

L =
¨

(z1, . . . , zd ) ∈ Z
d :

d
∑

i=1
[zi ]bi = 0
«

(1)

can be shown to have volume |G |. The commonly-used Gaussian heuristic states that a ran-
domly selected sublattice of Zd admits a basis formed only of vectors of length less than
exp(O(d ))Vol(L)1/d . Secondly, the elements b1, . . . , bd can be chosen small, namely such that
for any ε ∈ {0, 1}d , the sum

∑d
i=1[εi ]bi can be computed in Õ(n) operations, that is, the cost

of a single addition in G .

2.3 AnextensionofRegev’s algorithm to Jacobian varieties of hyperelliptic
curves

As presented above for general groups, Regev’s algorithm extends readily to Jacobian
varieties of hyperelliptic curves. What remains is to show that the elements b1, . . . , bd can be
chosen in such a way that the sums [z1]b1+ · · ·+[zd ]bd can be efficiently computed and yield
a solution to the DLP.

The elements b1, . . . , bd−2 in Regev’s algorithm have to be small, in other words, they have
to admit representations of just a few bits. When the genus g = g (n) grows to infinity with n
we take, for i ¶ d − 2, bi = (Pi )− (∞) for some points Pi ∈ H (Fq ). When g is constant, in
particular when g = 1 or g = 2, we let bi = Pi ,1 + · · ·+ Pi , g − g (∞)where all Pi , j are points
whose x and y coordinates admit lifts toQ of small height.

We now evaluate which speedup this yields compared to Shor’s algorithm as g →∞ and
in the specific case g = 2.
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3 Speedup for large genera
TheDLP variant of Regev’s algorithm was first restricted [EG24] to computing discrete

logarithms in G = F×p . A careful scrutiny of the proof shows that it applies equally to any
group where the lattice of Equation (1) admits a basis of relatively short vectors and where
a set of elements can be added much faster than general elements of G . These conditions are
to be compared to the definition of Regev-friendly groups in [BBP24] and are made precise in
the following result.

Theorem1 (Theorem1 in [EG24], reformulated). LetK be a constant. LetG be a commutative
group whose order is an n-bit integer and where the group law can be computed in Õ(n) binary
operations. Let d = d (n) =O(

p
n). Assume that the lattice L defined in Equation (1) admits

a basis whose vectors have length less than exp(K n/d ). If G has a subset S such that for any
s1, . . . , sd ∈ S and any ε ∈ {0, 1}d , the sum

∑d
i=1[εi ]si can be computed in Õ(n) binary

operations, then there exists an explicit probabilistic algorithm to compute any discrete logarithm in
G by repeating d + 4 times a quantum procedure of Õ

�

(d + n
d )n
�

quantum gates, with a success
rate of 1− o(1).

In the following, G is the Jacobian variety of a hyperelliptic curve H of genus g defined
over a finite field Fq . Its elements are computed inMumford representation. The condition on
the lattice involved in the algorithm are unconditionally proven only in the case when G = F×p
(see [Pil24]) although there are heuristic arguments that it holds for many types of groups.

Heuristic 2. There exists a constantK such that the following holds. Let H be a hyperelliptic curve
over Fq of genus g such that | Jac(H )| is an n-bit integer. Let d =min( g ,

p
n) and b1, . . . , bd

be elements of Jac(H ) of the form (P )− (∞)with P ∈ H (Fq ) drawn uniformly at random. Then,
almost surely, b1, . . . , bd span Jac(H ) and the lattice L in Equation 1 has a basis where each basis
vector has norm at most T = exp(K n/d ).

We are now ready to prove the main result of this section.

Theorem 3 (under Heuristic 2). Let H be a hyperelliptic curve of genus g defined over Fq , such
that the cardinality of its Jacobian variety, | Jac(H )|, is a n-bit integer. Then there exists an explicit
probabilistic quantum algorithm which succeeds with probability 1− o(1) and has complexity
Õ((d + n

d )n) where d =min( g ,
p

n).

Proof. The set S = {(P )− (∞) : P ∈ H (Fq )} will play the role of the set of small elements of
Jac
Fq
(H ). We seek to applyTheorem 1 with d =p g . This requires three ingredients:

1. The addition law in the Jacobian variety is efficiently computable; indeed, Cantor’s
algorithm [CFA+05] has complexity Õ( g )M (q ) = Õ(n).

2. Consider now the size of S . Since | Jac(H )| ∼ q g is an n-bit integer, we have n ∼
g log2 q . Since |H (Fq )| ∼ q , we have |S | ∼ q . Then, it follows that log2 S ∼ n

g ¾

n1/2
¾ d .

3. Finally, we evaluate sums of the form
∑d

i=1[εi ]si as follows. To compute the Mum-
ford representation of the divisor Lε =

∑d
i=1[εi ](Pi ) − [
∑d

i=1 εi ](∞), we set u =
∏d

i=1(x − xi ) and compute v (x ) such that v (xi ) = yi . This can be done in time
O(M ( g ) log g )M (Fq ) (see [vzGG03, Sec 10.2] and further O(n(log n)2) = Õ(n).

Since the conditions ofTheorem 1 are satisfied, the conclusion follows.
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This demonstrates that the full speedup which Regev’s algorithm provides over Shor’s isp
n, where n is the bit size of the group order, assuming g ¾

p
n. Furthermore, as g and n

both go to infinity, so does this speedup.

4 Speedup for g = 2
We now turn to the case g = 2 which is most relevant from a cryptographic viewpoint.

The previous section shows that Regev’s algorithm achieves a speedup of min( g ,
p

n) = 2
over Shor’s. Here, we describe a strategy which yields an improved speedup of 8 or 9 on
concrete examples. The key idea is to search for “twist” curves admitting suitable base elements
b1, . . . , bd−2.

4.1 A general strategy to find small elements on Jacobian varieties
We recall the strategy of [BBP24, Sec 3.3] for elliptic curves and extend it to hyperelliptic

curves. Consider the equation defining H : y 2 = f (x ). The Mordell–Weil theorem, which
states that Jac

Q
(H ) ' T ×Zr for a finite group T and a positive integer r , is constructive

and allows us to extract a free family from any set of elements of Jac
Q
(H ) (see e.g. [Sch95]).

A reduction to Jac
Fq
(H ) of a basis of the free part of Jac

Q
(H )may then be used as the elements

b1, . . . , bd−2 in Regev’s algorithm; their height are small and their independence overQmakes
it almost certain that Heuristic 2 holds.

In [BBP24, Sec 3.3], the following is noted for g = 1 but extends readily to greater genera.
If the curve Hδ of equation δ y 2 = f (x ) has a Jacobian variety of large Mordell–Weil rank
and ifδ is a square in Fq then the map (x , y ) 7→ (x ,

p
δ y ) is an birational equivalence from

H to Hδ which induces an isomorphism between the associated Jacobian varieties. Hence,
the discrete logarithm problem of Jac

Fq
(H )may be reduced to that of Jac

Fq
(Hδ ); since the

latter has large rank overQ, a free set of small-height generators for Jac
Q
(Hδ ) can then be used

in Regev’s algorithm. Concretely, if r = rank Jac
Q
(Hδ ), we can run Regev’s algorithm with

the parameter d = r + 2.
We now show that, in fact, any value ofδ can be used.

4.2 Exploiting birational equivalence defined over extension fields
For arbitrary values of δ , the birational equivalence H → Hδ may be defined over an

extension of the base field Fq . We show that this nevertheless induces a reduction of the
discrete logarithm from Jac

Fq
(H ) to Jac

Fq
(Hδ ). The reduction proceeds as follows.

Denote by P = [α]Q the discrete logarithm problem to be solved on Jac
Fq
(H ) where

α ∈ Z is the unknown. Let κ be such that the birational equivalence ϕ : H → Hδ is defined
over Fqκ . Through ϕ, the DLP becomes ϕ(P ) = [α]ϕ(Q ) on J = Jac

Fqκ
(Hδ ). Now, letπ be

the Frobenius endomorphism of Fq acting on J ; since it commutes with scalar multiplication,
we haveπk (ϕ(P )) = [α]πk (ϕ(Q )) and thus we deduce

κ
∑

k=1
πkϕ(P ) = [α]

κ
∑

k=1
πkϕ(Q )

where both sums are stabilized byπ and are thus points in Jac
Fq
(Hδ ). This yields a discrete

logarithm problem in Jac
Fq
(Hδ ) which cannot be trivial (e.g. of the form 0 = [α]0) since, in

cryptographic applications, Q being a generator of a large subgroup of Jac
Fq
(H ), it cannot be

in the trace zero subgroup.
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The original discrete logarithm problem in Jac
Fq
(H ) is thus reduced to another in

Jac
Fq
(Hδ ) where we can exploit the large rank of Jac

Q
(Hδ ).

4.3 Cryptographic examples
Example 4. Take the Buhler–Koblitz curve “4GLV127-BK” which has been considered for
cryptographic use [BK98, BCM14a]. It is defined as C : y 2 = x 5 + 17 over Fq where q =
264(263 − 27443) + 1; its Jacobian variety Jac(C ) has a 254-bit prime group order.

Using Magma [BCP97] we searched for “twist curves” of the form Cδ : y 2 = x 5 + 17δ
whose Jacobian variety has large rank over Q. We proceeded as follows. First, for each integer
δ ∈ {1, . . . , 128 · 104}, we enumerated all rational points on Jδ = Jac

Q
(Cδ ) of height less than

103 and extracted a reduced basis; this quickly gave us a lower bound on rank( Jδ ). Second, when
this lower bound was two or greater, we determined the full Mordell–Weil group of Jδ and its
rank under the GRH; a timeout was reached for three values ofδ (2450, 131625, and 273904)
which were consequently excluded. This entire computation ran on 128 cores for a total time of
448 960 seconds or about one hour of elapsed time. The distribution of rank( Jδ ) is as follows.

rank( Jδ ) #{δ}

0? 1 265 371
1? 14 282
2 191
3 89
4 50
5 9
6 3
7 2
¾ 8 0

The asterisks on the first two columns denote that they count Jacobians Jδ of which the rank could
not be proven to be two or greater by enumerating rational points of height less than 103. This
serves as a useful heuristic to quickly filter out “unpromising” twists and thus speed up computations;
nevertheless, these Jacobians could very well be (and some indeed are) of greater rank.

Forδ = 190304, we find that the variety Jac
Q
(Cδ ) has rank seven and admits the following

basis in projective Mumford coordinates:

(x + 18,−1160, 1),
(x − 26,−3888, 1),

(x 2 − 7
9

x − 338,−881
27

x − 5242
3

, 2),

(x 2 + 936,
338

3
x + 3888, 2),

(x 2 − 32x + 416, 55x − 1392, 2),

(x 2 − 2409
64

x + 21333
32

,−79605
512

x + 1063409
256

, 2),

(x 2 − 5345
256

x + 35373
128

,−111569
4096

x + 4153949
2048

, 2).
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Note that, while C , Cδ , and their Jacobian varieties are defined over Fq , the birational map

ϕ :
¨

C −→ Cδ
(x , y ) 7−→ (δ1/5 x ,δ1/2 y )

is only defined overFq 5 sinceδ is a squaremodulo q . We can thus apply the result of the Section 4.2
for κ = 5. As a consequence, we can attack the discrete logarithm problem in Jac

Fq
(C ) nine times

faster than Shor’s algorithm.

Example 5. Hyperelliptic curves of the form y 2 = x 5 +δ x have been proposed for cryptography,
especially for pairing-based applications [KT08, Dry12]. Section 4.2 implies that, over finite fields
whereδ does not vanish, the discrete logarithm problems of all such curves are equivalent; indeed,
we have the birational equivalence:

y 2 = x 5 +δ x −→ y 2 = x 5 + x
(x , y ) 7−→

�

δ1/4 x ,δ5/8 y
�

Therefore, to attack such curves using Regev’s algorithm, it suffices to find one which has large rank
over the rationals. A search performed similarly to the above example exhibited the curve

y 2 = x 5 + 3083871x

of which the Jacobian variety has rank six over Q. Consequently, we can attack the discrete
logarithm problem in all such curves eight times faster than Shor’s algorithm.

Note, however, that our strategy does not apply to hyperelliptic curves for which no twist
of large rank and with small generators can be identified; for example, this is the case of the
Gaudry–Schost curve [GS04, Appendix A].

5 Conclusion and open questions
The twist strategy outlined above allows us to obtain almost the full speedup of Regev’s

algorithm with respect to Shor’s: for the cryptographic examples given above, we can run
Regev’s algorithm using the parameter d = 9 whereas the optimal value would be

p
256 = 16.

Furthermore, the speedup is greater than the one obtained for elliptic curves in [BBP24]. This
corroborates with the fact that the speedup is min( g ,

p
n) when g is large.

It is an open question to prove Heuristic 2 because Pillate’s proof [Pil24] uses classical
results about the rational primes which have no proven analogue in the case of the Jacobian
varieties of hyperelliptic curves. In particular one needs to estimate partial sums associated to
the Dirichlet L-function of the character or the class group of a function field. An even more
exploratory question would be to estimate what ranks can be obtained by twisting a given
hyperelliptic curve.
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