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Abstract

High immunization rates are often sought to contain epidemics with target values
typically 70%or greater. Our objective is to independently assess this value in the context of
the 2020Covid-19pandemic inFrenchPolynesia. To this extent, wedevelop a graph-based
epidemicmodel tailored to this pandemic and compute the vaccination threshold required
to prevent exponential spread of the communicable disease. Our results indicate that herd
immunity increases drastically when a threshold percentage of vaccinated individuals is
reached. Experimental data using our idealized model indicates that the threshold value is
approximately 45%. We conclude that vaccination is much more effective at preventing
pandemics than usually predicted.

1 Introduction
It is well-known that highly communicable diseases such as measles can only be thwarted
when a very large proportion of the population is immune, and vaccination is an effective way
to artificially boost public immunity. In this paper, we seek to compute the herd immunity
threshold (HIT), that is, the proportion of individuals who must be immune in order to ensure
that reintroducing the disease in an otherwise healthy population only leads to contained,
non-exponential spread.

This threshold is often confused with the final cumulative incidence rate (FCIR) which is
the eventual proportion of recovered individuals in a naturally spreading pandemic. For simple
compartmental models such as SIR, those values are in fact equal, and we have

HIT = FCIR = 1− 1/R0

where R0 denotes the basic reproductive number of the disease. ForCovid-19, current estimates
(Billah & Khan, 2020; Kucharski et al., 2020) give R0 ∈ [2.4, 3.4]. Considering a worst-case
scenario of R0 ≈ 3.4, government officials thus seek an immunization rate of 1−1/3.4 ≈ 70%
to contain further epidemics.

Over the past year it has been widely argued that the herd immunity threshold for Covid-19
ought in fact to be smaller (Britton et al., 2020; Gomes et al., 2022). We investigate this claim
by developing a graph-based epidemic model. Such models provide finer-grained methods for
simulating the spread of a communicable disease through a population with a heterogeneous
social graph. We calibrate our model on public data specific to the 2020 Covid-19 pandemic
in French Polynesia.
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We then use this model to compute the effectiveness of vaccination as measured by the
resulting FCIR when reintroducing the disease in a partly immune population. Our computa-
tions show that vaccination sharply increases in effectiveness when a threshold proportion of
about 45% immune individuals is reached. While considerations not taken into account by
our idealized model (such as variants or antibody decay) surely affect this threshold value, we
argue that the overall effect stands.

2 Epidemic models

2.1 The SIRmodel
The SIRmodel (Kermack &McKendrick, 1927) aims to predict the spread of an infectious
disease; to this extent, it partitions the population in compartments: susceptible individuals
(S), infectious individuals (I), recovered individuals (R). Flow patterns between compartments
are generally described by ordinary differential equations such as:

∂ S
∂ t
= −
βI S

N
,

∂ I
∂ t
=
βI S

N
− γ I ,

∂ R
∂ t
= γ I ,

where N is the total population,β is the probability of contagion per individual per unit of
time, and γ is the inverse of the duration of contagion.

Thismodel and itsmany variants implicitly assume perfect and uniform interaction between
the populations of each compartment, as if each individual was in contact with every other
in a homogeneous way. This is equivalent to assuming the social graph to be complete. This
profound assumption on spreading patterns makes such models very simple and thus easy to
work with but exhibits suboptimal correlation with observed data.

2.2 Graph-based models
To simulate the spread of an epidemic while taking into account the complexity of social
interactions, we rely on graph-based models, also known as network-based models.

A graph consists of a set of verticesV and a set of edges E ⊂V 2. In the social graph, vertices
represent individuals and edges correspond to significant social interactions. In this context
we restrict the study to graphs which are non-directed, simple, and connected. Since the social
graph cannot be rigorously defined or even computed, we use randomly generated graphs with
specific properties: vertices are laid out on a two-dimensional lattice; for each vertex, a degree
is chosen randomly according to a Poisson distribution; as many vertices are then randomly
chosen from neighboring lattice points and connected to it.

Figure 1 shows the first four steps of a simulation of an epidemic along the edges of a social
graph. Our model computes such simulations by tracking the state of each vertex: susceptible,
incubating, contagious or recovered. Initially, the entire population is assumed susceptible,
and we randomly select a given number to be incubating. After a period of incubation, they
become contagious and are then able to pass on the disease to their neighbors in the social
graph. Those vertices eventually become recovered and thus immune.

We refer the reader to (Kiss et al., 2017) for an overview of graph-basedmodels and we note
that such models have already produced important results concerning the Covid-19 pandemic
for specific geographical areas (Chang et al., 2021; Pizzuti et al., 2020).
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Figure 1: Simulating the propagation of the disease along the social graph.

3 Calibrating social-graph parameters
For our model, we selected graphs generated as described above to best approximate the
social graph of French Polynesia. The latest count reports 275,916 inhabitants and we thus
generate graphs containing a total of 250,000 vertices each. The degree of vertices is randomly
distributed in [4,∞) according to a Poisson distribution with mean-value 12. This allows us
to model a wide range of individuals with both small and large social circles (Meyerowitz et al.,
2021) as well as to account for virus-specific phenomenon such as overdispersion (Endo et al.,
2020).

We further ensure that our graphs are connected with a diameter of about 30 which is
significantly higher than the degree of separation butmore realistic given that Covid-19mainly
spreads through close relationships.

3.1 Calibrating disease-related parameters
Ourmodel relies on state-of-the-art range estimates for the Covid-19 incubation period (Lauer
et al., 2020) and contagion period (X. He et al., 2020). Since there is no public data on the
basic reproductive number R0 in French Polynesia, we conservatively use the upper bound 3.4
of the worldwide estimated range. Our algorithm’s parameters are further chosen such that
this value matches the initial observed spike of R0 where the epidemic grows exponentially.

However we note that the actual value of R0 should be slightly smaller in French Polynesia
due to multiple factors pertaining to tropical climate (Prather et al., 2020; Raines et al., 2021)
including: higher humidity and thus less communicability via droplets (Božič & Kanduč,
2021); and higher temperatures and thus a lower frequency of indoor social activities (Bulfone
et al., 2021).

4 Results
4.0.1 Sample runs

The procedures described above have been implemented in Python; the code is freely available
online at:

https://gaati.org/oyono/pandemic-code/

Using that code, we compute ten thousand sample runs of ourmodel on ahealthy population
and verify that the output matches the expected values. See Figure 2 for one such run which is
typical of what would be expected of a naturally evolving pandemic without any protective
measures such as lockdowns or vaccination.
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Figure 2: Sample run of our graph-based model.

4.1 Simulating the impact of vaccination on FCIR
We now consider a healthy population of which a given percentage has been vaccinated and
thus considered immune. The disease is then introduced, and we compute the final cumulative
incidence rate (FCIR) of the epidemic. To determine the herd immunity threshold (HIT),
that is, the threshold vaccination rate which prevents the reintroduced disease from spreading
exponentially, we compute, for each percentage of vaccinated individuals in 0.1% increments,
a thousand sample runs of our model over randomly chosen graphs. Figure 3 shows our results.

4.2 Discussion
For sample runs of ourmodel simulating a naturally evolving pandemic on a healthy population,
the resulting FCIR lies in the range [75%, 85%]which is widely accepted for Covid-19 (S. He
et al., 2020;Wangping et al., 2020). This confirms the relevance of our model.

We now turn to the simulation of an epidemic in a population of which a given percentage
has been vaccinated and thus considered immune. Our computation of FCIR as a function
of the vaccination rate is displayed in Figure 3. It reveals a sharp increase in vaccination
effectiveness around a threshold rate of about 40%. For vaccination rates below this threshold,
the level of protection as measured by FCIR varies roughly linearly with the vaccination rate,
as predicted by homogeneous models such as SIR. For vaccination rates above this threshold,
the level of protection quickly reaches its maximum: exponential spread of the disease is not
observed at vaccination rates of 45% and above.

We stress actual threshold values may differ since our model reflects an idealized version of
the 2020Covid-19 pandemic and, as such, does not account for several factors includingmulti-
ple circulating variants of the virus (Fowlkes et al., 2021) and vaccine effectiveness (Rosenberg
et al., 2021).

Nevertheless, we argue that the general behavior stands, namely that vaccination sharply
increases in effectiveness around a threshold value. Said HIT value is necessarily smaller than
the FCIR for a naturally evolving pandemic. Further research remains necessary to confidently
assess the HIT value.
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Figure 3: FCIR for an epidemic in a partly-vaccinated population. For each vaccination rate
in 0.1% increment, FCIR has been computed for a thousand randomly chosen graphs; the
black line shows the median value, and darker to lighter gray areas display probability ranges
[25%, 75%], [10%, 90%], and [5%, 95%].

5 Conclusion
We conclude that, as a public health strategy, vaccination is much more effective at preventing
pandemics than predicted by homogeneous models. While its effectiveness initially grows lin-
early in the proportion of immune individuals, it sharply increases when a threshold immunity
rate is reached. Although our model is unsuited to determine actual values, it indicates that, at
least in the context of French Polynesia, the actual HIT is likely closer to 50% than to 70%.
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