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Abstract—Rigorous statements and formal proofs are presented
for both foundational and advanced folklore theorems on the
Radon-Nikodym derivative. The cases of product and marginal
measures are carefully considered; and the hypothesis under
which the statements hold are rigorously enumerated.

I. INTRODUCTION

In mathematics, folklore theorems refer to results that are
widely accepted and frequently utilized by experts but are
often not formally proven or explicitly documented. In game
theory for example, the original Folk theorem earned its
name because, although it was widely recognized among
game theorists during the 1950s, it remains unpublished and
without attribution to particular authors. See for instance [1]
and [2]. Folklore theorems populate all areas in mathemat-
ics. In information theory, a large set of folklore theorems
involve the Radon-Nikodym derivative (RND), first introduced
by Radon [3]; and later generalized by Nikodym [4]. The
existence of such folklore theorems in this area arises in part
from the fact that all Shannon’s information measures can be
defined in terms of the RND. Interestingly, most properties of
the RND are often presented as comments in most textbooks
on measure theory and probability theory, c.f, [5]–[11]

Claude Shannon did not use the RND in his foundational
papers [12], [13] to define entropy and mutual information.
Instead, Shannon opted for restricting his publications to the
case in which measures either possess a probability mass
function or a probability density function, which are both
instances of RNDs. This choice significantly influenced the
presentation of most subsequent results in information theory
and established the style in which classical textbooks were
written [14]–[30]. Nonetheless, the RND has been increasingly
adopted in modern textbooks [31] and in the definition of
new information measures, e.g., lautum information [32], to
privilege a unified presentation. That is, independently of the
measure used as a reference, e.g., the counting measure, the
Lesbegue measure, etc. Some recent results whose presentation
relies on the RND are for instance [33]–[42]. In the light
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of the central role of the RND in information theory, this
paper presents rigorous statements and formal proofs for the
most common folklore theorems on the RND. These include
the change of measure theorem, the proportional-measures
theorem, the chain rule, the multiplicative inverse, linearity and
continuity theorems, as well as the product-measure theorem.
Less common theorems such as the unit measure and two
Bayes-like rules of the RND are also formally proved. This is
the first time such material appears in peer-reviewed literature.
Finally, it is important to highlight that particular attention
has been put on rigorously stating the conditions under which
these theorems hold, hopefully providing a valuable reference
for researchers and students in information theory.

II. PRELIMINARIES

This section introduces relevant notational conventions along-
side the Radon-Nikodym theorem. In particular, some equal-
ities presented in this paper are valid almost surely with
respect to a given measure. For clarity, given a measure space
(Ω,F , P ), the notation a.s.

=
P

is introduced and shall be read as
“equal for all x ∈ Ω except on a negligible set with respect
to P ”; or equivalently as “equal almost surely with respect
to P ”. Moreover, given two measures P and Q on the same
measurable space, the notation P ≪ Q stands for “the measure
P is absolutely continuous with respect to Q”. Using this
notation, the Radon-Nikodym derivative is introduced by the
following theorem.

Theorem 1 (Radon-Nikodym theorem, [5, Theorem 2.2.1]):
Let P and Q be two measures on a given measurable
space (Ω,F ), such that Q is σ-finite and P ≪ Q. Then, there
exists a nonnegative Borel measurable function g : Ω → R
such that for all A ∈ F ,

P (A) =

∫
A
g(x)dQ(x). (1)

Moreover, if another function h satisfies for all A ∈ F
that P (A) =

∫
A h(x)dQ(x), then g(x)

a.s.
=
Q
h(x).

The function g in (1) is often referred to as the Radom-
Nikodym derivative of P with respect to Q; and is also written
as dP

dQ , such that g(x) = dP
dQ (x).



The Radon-Nikodym theorem is the foundational tool from
which many folklore theorems in information theory originate.
Some of these folklore theorems are thoroughly studied in the
following sections.

III. BASIC FOLKLORE THEOREMS

This section focuses on basic folklore theorems, where “basic”
denotes their well-established nature. One of the most common
folklore theorems is often referred to as the “change of
measure” theorem.

Theorem 2 (Change of Measure): Let P and Q be two
measures on the measurable space (Ω,F ) with P ≪ Q; and
Q a σ-finite measure. Let f : Ω → R be a Borel measurable
function such that the integral

∫
Ω
f(x)dP (x) exists. Then, for

all A ∈ F ,∫
A
f(x)dP (x) =

∫
A
f(x)

dP

dQ
(x)dQ(x). (2)

Proof: The first part of the proof is developed under the
assumption that the function f is simple. That is, for all x ∈ X ,
f(x) =

∑m
i=1 ai1Ai

(x), for finite m ∈ N, disjoint sets A1,
A2, . . ., Am in F and reals a1, a2, . . ., am. For all A ∈ F ,
and for all i ∈ {1, 2, . . . ,m}, let Bi = A∩Ai, hence,∫

A
f(x)

dP

dQ
(x)dQ(x) =

∫
A

dP

dQ
(x)

n∑
i=1

ai1Ai(x)dQ(x)(3)

=

n∑
i=1

ai

∫
Bi

dP

dQ
(x)dQ(x) (4)

=

n∑
i=1

aiP (Bi), (5)

where the equality in (4) follows from the linearity of the
integral [5, Theorem 1.6.3]; and the equality in (5) follows
from Theorem 1. On the other hand, for all A ∈ F∫

A
f(x)dP (x) =

∫
A

n∑
i=1

ai1Ai(x)dP (x) (6)

=

n∑
i=1

∫
A
ai1Ai(x)dP (x) (7)

=

n∑
i=1

ai

∫
Bi

dP (x) =

n∑
i=1

aiP (Bi), (8)

where the equality in (7) follows from the linearity of the
integral [5, Theorem 1.6.3]. Hence, from Theorem 1, and
equalities (5) and (8), it follows that when f is a simple
function, the equality in (2) holds. This concludes the first
part of the proof.

The second part of the proof proceeds by considering the
following observations: (a) simple functions form a dense
subset of the space of Borel measurable functions [5, The-
orem 1.5.5(b)]; and (b) the integral is a continuous map
from that space [5, Theorem 1.6.2]. Hence, from (a) and
(b), it follows that (2) also holds for any Borel measurable
function f . This completes the proof.

Another reputed folklore theorem, which is often referred
to as the “proportional measures” theorem, establishes the
explicit forms of the Radon-Nikodym derivatives between two
measures, in which one is proportional to the other.

Theorem 3 (Proportional Measures): Let P and Q be two σ-
finite measures on the measurable space (Ω,F ), such that for
all A ∈ F

Q(A) = cP (A), (9)

with c > 0. Then, for all x ∈ Ω

dP

dQ
(x)

a.s.
=
Q

1

c
, and

dQ

dP
(x)

a.s.
=
P

c. (10)

Proof: First, note that (9) implies that the measures P and Q
are mutually absolutely continuous. Hence, from Theorem 1,
it follows that for all A ∈ F ,

P (A) =

∫
A
dP (x) =

∫
A

dP

dQ
(x) dQ(x). (11)

On the other hand, the equality (9) also implies

P (A) =
1

c
Q(A) =

∫
A

1

c
dQ(x). (12)

Hence, it follows directly from Theorem 1 that the Radon-
Nikodym derivative dP

dQ is unique almost surely with respect
to Q. Thus, dP

dQ (x)
a.s.
=
Q

1
c . Using similar arguments and the fact

that P and Q are mutually absolutely continuous, it is verified
that dQ

dP (x)
a.s.
=
P
c.

In the case in which c = 1 in (10), measures P and Q are
identical, thus, dP

dQ (x)
a.s.
=
Q

dQ
dP (x)

a.s.
=
P

1.

The following folklore theorem is often referred to as the
“chain rule”.

Theorem 4 (Chain Rule): Let P , Q, and R be three measures
on the measurable space (Ω,F ) such that P ≪ Q; Q ≪ R;
and Q and R are σ-finite measures. Then,

dP

dR
(x)

a.s.
=
R

dP

dQ
(x)

dQ

dR
(x). (13)

Proof: From the assumptions of the theorem, it follows that
for all A ∈ F ,

P (A) =

∫
A
dP (x) =

∫
A

dP

dQ
(x)dQ(x) (14)

=

∫
A

dP

dQ
(x)

dQ

dR
(x)dR(x) (15)

=

∫
A

dP

dR
(x)dR(x), (16)

where the second equality in (14) follows from Theorem 1;
and the equality in (15) follows from Theorem 2 . The equality
in (16) holds from Theorem 1 and by noticing that P ≪
R. Therefore, the equalities in (15) and (16) together with
Theorem 1 imply (13), which completes the proof.



The following folklore theorem shows the connection be-
tween the Radon-Nikodym derivative and its multiplicative
inverse.

Theorem 5 (Multiplicative Inverse): Let P and Q be two
mutually absolutely continuous measures on the measurable
space (Ω,F ); and assume that for all x ∈ Ω, dQ

dP (x) > 0.
Then,

dP

dQ
(x)

a.s.
=
Q

Å
dQ

dP
(x)

ã−1

. (17)

Proof: From Theorem 4, it follows that

dP

dQ
(x)

dQ

dP
(x)

a.s.
=
Q

dQ

dQ
(x)

a.s.
=
Q

1, (18)

where the last equality follows from Theorem 3, with c = 1.
This completes the proof.

The subsequent folklore theorem establishes the linearity of
the Radon-Nikodym derivative.

Theorem 6 (Linearity): Let P be a σ-finite measure on (Ω,F )
and let also Q1, Q2, . . . , Qn be finite measures on (Ω,F )
absolutely continuous with respect to P . Let c1, c2, . . . , cn be
positive reals; and let S be a finite measure on (Ω,F ) such
that for all A ∈ F , S(A) =

∑n
t=1 ctQt(A). Then,

dS

dP
(x)

a.s.
=
P

n∑
t=1

ct
dQt

dP
(x). (19)

Proof: The proof starts by noticing that, from the assumptions
of the theorem, it holds that S ≪ P . Hence, for all A ∈ F ,
it holds that∫

A

dS

dP
(x)dP (x) =

∫
A
dS(x) =

n∑
t=1

ctQt(A) (20)

=

n∑
t=1

∫
A
ctdQt(x) =

n∑
t=1

∫
A
ct
dQt

dP
(x)dP (x) (21)

=

∫
A

n∑
t=1

ct
dQt

dP
(x)dP (x), (22)

where the first equality in (20) and the last equality in (21)
follow from Theorem 2; and the equality (22) follows from
the additivity property of the integral [5, Corollary 1.6.4]. The
proof ends by using Theorem 1, which implies the equality
in (19) from (22).

The following folklore theorem establishes the continuity of
the Radon-Nikodym derivative.

Theorem 7 (Continuity): Let P be a σ-finite measure on
(Ω,F ), and let Q1, Q2, · · · be an infinite sequence of σ-finite
measures on (Ω,F ), converging to a measure Q. Suppose that
for all n ∈ N, Qn ≪ P . Then, Q ≪ P and

lim
n→∞

dQn

dP
(x)

a.s.
=
P

dQ

dP
(x). (23)

Proof: From the assumptions of the theorem, for all A ∈ F ,
it holds that

Q(A) = lim
n→∞

Qn(A) (24)

= lim
n→∞

∫
A

dQn

dP
(x)dP (x) (25)

=

∫
A

lim
n→∞

dQn

dP
(x)dP (x), (26)

where the equality in (25) follows from Theorem 2 ; and the
equality in (26) follows from [5, Theorem 1.6.2]. The equality
in (26) implies that Q ≪ P . Hence, for all A ∈ F , it holds
that

Q(A) =

∫
A

dQ

dP
(x)dP (x). (27)

Therefore, the equalities in (26) and (27) jointly with The-
orem 1 imply equation (23), which completes the proof.

The ensuing folklore theorem establishes the relation between
the Radon-Nikodym derivative of a product measure with
respect to its component measures.

Theorem 8 (Product of Measures): For all i ∈ {1, 2}, let
Pi and Qi be a finite and a σ-finite measure on (Ωi,Fi),
respectively; with Pi ≪ Qi. Let also P1P2 and Q1Q2 be the
product measures on (Ω1 × Ω2,F1 × F2) formed by P1 and
P2; and Q1 and Q2, respectively. Then,

dP1P2

dQ1Q2
(x1, x2)

a.s.
=

Q1Q2

dP1

dQ1
(x1)

dP2

dQ2
(x2) . (28)

Proof: From the assumptions of the theorem, for all A ∈
(Ω1 × Ω2),

P1P2 (A) =

∫
A
dP1P2 (x1, x2) (29)

=

∫ ∫
Ax2

dP1 (x1) dP2 (x2) (30)

=

∫ ∫
Ax2

dP1 (x1)

dQ1
dQ1 (x1) dP2 (x2) (31)

=

∫ ∫
Ax2

dP1(x1)

dQ1

dP2(x2)

dQ2
dQ1(x1)dQ2(x2) (32)

=

∫
A

dP1

dQ1
(x1)

dP2

dQ2
(x2) dQ1Q2 (x1, x2) , (33)

where Ax2 is the section of the set A determined by x2,
namely, Ax2

≜ {x1 ∈ Ω1 : (x1, x2) ∈ A}; the equality in (29)
arises from the definition of P1P2 as the product of P1 and
P2; the equality in (31) is a direct consequence of Theorem 2;
the equality in (32) follows from Theorem 1; and finally, the
equality in (33) is due to the construction of Q1Q2 as the
product measure of Q1 and Q2.

The proof follows by observing that from the equal-
ity in (33), it holds that P1P2 ≪ Q1Q2. Thus, for
all A ∈ F1 × F2,

P1P2 (A) =

∫
A

dP1P2

dQ1Q2
(x1, x2) dQ1Q2 (x1, x2) . (34)



The equalities in (33) and (34), together with Theorem 1, im-
ply the equality in (28), which completes the proof.

IV. ADVANCED FOLKLORE THEOREMS

This section requires some additional notation. In particular,
denote by △ (X ,FX ), or simply △ (X ), the set of all prob-
ability measures on the measurable space (X ,FX ), where
FX is a σ-algebra on X . Using this notation, conditional
probability measures can be defined as follows.

Definition 1 (Conditional Probability): A family
PY |X ≜ (PY |X=x)x∈X of elements of △(Y,FY)
indexed by X is said to be a conditional probability measure
if, for all sets A ∈ FY , the map

X → [0, 1] (35)
x 7→ PY |X=x(A) (36)

is Borel measurable. The set of such conditional probability
measures is denoted by △(Y|X ).

A conditional probability PY |X ∈ △(Y|X ) and a probability
measure PX ∈ △(X ) determine two unique probability
measures in △(X × Y) and △(Y × X ), respectively. These
probability measures are denoted by PXY and PY X , respec-
tively, and for all sets A ∈ FX × FY , it follows that

PXY (A) =

∫
PY |X=x (Ax) dPX (x) , (37)

where Ax is the section of the set A determined by x,
namely,

Ax ≜ {y ∈ Y : (x, y) ∈ A} . (38)

Alternatively, for all sets B ∈ FY×FX , it follows that

PY X (B) =
∫

PY |X=x (Bx) dPX (x) , (39)

where Bx is the section of the set B determined by x. For
all sets A ∈ FX × FY , let the set Â ∈ FY × FX be such
that

Â = {(y, x) ∈ Y × X : (x, y) ∈ A} . (40)

Then, from (37) and (39), it holds that

PXY (A) = PY X

Ä
Â
ä
. (41)

Using this notation, the notion of marginal probability mea-
sures can be introduced as follows.

Definition 2 (Marginals): Given two joint probability measures
PXY ∈ △ (X × Y) and PY X ∈ △ (Y × X ), satisfying (41),
the marginal probability measures in △ (X ) and △ (Y), de-
noted by PX and PY , respectively satisfy for all sets A ∈ FX
and for all sets B ∈ FY ,

PX (A) ≜ PXY (A× Y) = PY X (Y ×A) ; and (42)
PY (B) ≜ PXY (X × B) = PY X (B × X ) . (43)

From the total probability theorem [5, Theorem 4.5.2], it
follows that for all A ∈ FY ,

PY (A) =

∫ ∫
A
dPY |X=x(y)dPX(x); (44)

and for all B ∈ FX ,

PX(B) =
∫ ∫

B
dPX|Y=y(x)dPY (y). (45)

The joint probability measures PXY and PY X can be de-
scribed via the conditional probability measure PY |X and the
probability measure PX as in (37) and in (39); or via the
conditional probability measure PX|Y ∈ △ (X|Y) and the
marginal probability measure PY ∈ △ (Y). More specifically,
for all sets A ∈ FX × FY , it follows that

PXY (A) =

∫
PX|Y=y (Ay) dPY (y) , (46)

where Ay is the section of the set A determined by y,
namely,

Ay ≜ {x ∈ X : (x, y) ∈ A} . (47)

Alternatively, for all sets B ∈ FY×FX , it follows that

PY X (B) =
∫

PX|Y=y (By) dPY (y) , (48)

where By is the section set of B determined by y.

Within this context, the following folklore theorem highlights
a property of conditional measures, which is reminiscent of
the unit measure axiom in probability theory.

Theorem 9 (Unit Measure): Consider the conditional prob-
ability measures PY |X ∈ △ (Y|X ) and PX|Y ∈ △ (X|Y);
the probability measures PY ∈ △ (Y) and PX ∈ △ (X )
that satisfy (44) and (45). Assume that for all x ∈ X , the
probability measure PY |X=x ≪ PY . Then,∫

dPY |X=x

dPY
(y)dPX(x)

a.s.
=
PY

1. (49)

Proof: For all A ∈ FY , from (44), it holds that

PY (A) =

∫ ∫
A
dPY |X=x(y)dPX(x) (50)

=

∫ ∫
A

dPY |X=x

dPY
(y)dPY (y)dPX(x) (51)

=

∫
A

∫
dPY |X=x

dPY
(y)dPX(x)dPY (y), (52)

where the equality in (51) follows from a change of mea-
sure (Theorem 2). Moreover, (52) is obtained using Fubini’s
theorem [5, Theorem 2.6.6]. The proof proceeds by noticing
that PY (A) =

∫
A dPY (y), and thus from Theorem 1 and the

equality in (52), the statement in (49) holds.

The following folklore theorem is reminiscent of the Bayes
rule.

Theorem 10 (Bayes-like rule): Consider the conditional proba-
bility measures PY |X and PX|Y ; the probability measures PY



and PX that satisfy (44) and (45); and the joint probabil-
ity measures PY X and PXY in (39) and (46) respectively.
Let also PXPY ∈ △ (X × Y,FX × FY) and PY PX ∈
△ (Y × X ,FY × FX ) be the measures formed by the product
of the marginals PX and PY . Assume that:

(a) For all x ∈ X , PY |X=x ≪ PY ; and
(b) For all y ∈ Y , PX|Y=y ≪ PX .

Then,

dPXY

dPXPY
(x, y)

a.s.
=

PXPY

dPX|Y=y

dPX
(x) (53)

a.s.
=

PXPY

dPY |X=x

dPY
(y) (54)

a.s.
=

PXPY

dPY X

dPY PX
(y,x). (55)

Proof: Note that assumptions (a) and (b) are sufficient for the
Radon-Nikodym derivatives of PXY with respect to PXPY

and PY X with respect to PY PX to exist. Hence, it follows
that for all sets A ∈ FX × FY ,

PXY (A) =

∫
A

dPXY

dPXPY
(x, y)dPXPY (x, y), (56)

which follows from Theorem 2. Note also that from (46), it
follows that

PXY (A) =

∫ ∫
Ay

dPX|Y=y (x) dPY (y) (57)

=

∫ ∫
Ay

dPX|Y=y

dPX
(x) dPX (x) dPY (y) (58)

=

∫ ∫
1Ay(x)

dPX|Y=y

dPX
(x)dPX(x)dPY (y) (59)

=

∫
1A(x, y)

dPX|Y=y

dPX
(x) dPXPY (x, y) (60)

=

∫
A

dPX|Y=y

dPX
(x) dPXPY (x, y) , (61)

where, the set Ay is defined in (47). Moreover, the equality
in (58) follows from Assumption (b) and Theorem 1. Similarly,
from (37), it follows that

PXY (A) =

∫ ∫
Ax

dPY |X=x (y) dPX (x) (62)

=

∫ ∫
Ax

dPY |X=x

dPY
(y) dPY (y) dPX (x) (63)

=

∫ ∫
1Ax

(y)
dPY |X=x

dPY
(y)dPY (y)dPX(x) (64)

=

∫ ∫
1Ay

(x)
dPY |X=x

dPY
(y)dPX(x)dPY (y) (65)

=

∫
1A(x, y)

dPY |X=x

dPY
(y) dPXPY (x, y) (66)

=

∫
A

dPY |X=x

dPY
(y) dPXPY (x, y) , (67)

where, the set Ax is defined in (38). Moreover, the equality
in (63) follows from Assumption (a) and Theorem 1; and the

equality in (65) follows by exchanging the order of integration
[5, Theorem 2.6.6]. Finally, from (41), it follows that

PXY (A) =

∫
Â
dPY X (y, x)

=

∫
Â

dPY X

dPY PX
(y, x) dPY PX (y, x) (68)

=

∫
1Â(y, x)

dPY X

dPY PX
(y, x) dPY PX (y, x) (69)

=

∫ ∫
1Âx

(y)
dPY X

dPY PX
(y, x) dPY (y)dPX(x) (70)

=

∫ ∫
1Ây

(x)
dPY X

dPY PX
(y, x) dPX(x)dPY (y) (71)

=

∫
1Â(x, y)

dPY X

dPY PX
(y, x) dPXPY (x, y) (72)

=

∫
A

dPY X

dPY PX
(y,x)dPXPY (x,y), (73)

where the set Â is defined in (40). By performing a change of
measure using Theorem 2 and assumption (a), the equality
in (68) is obtained; and the equality in (71) follows by
exchanging the order of integration [5, Theorem 2.6.6].

The proof is completed from Theorem 1 and by combining
equations (56), (61), (67) and (73), which establish (53),
(54) and (55).

Theorem 11 (Inverse Bayes-like Rule): Consider the condi-
tional probability measures PY |X and PX|Y ; and the proba-
bility measures PY and PX that satisfy (44) and (45); and
the joint probability measures PY X and PXY in (39) and (46)
respectively. Assume that:

(a) For all x ∈ X , PY ≪ PY |X=x; and
(b) For all y ∈ Y , PX ≪ PX|Y=y .

Then,
dPXPY

dPXY
(x, y)

a.s.
=

PXY

dPX

dPX|Y=y
(x)

a.s.
=

PXY

dPY

dPY |X=x
(y)

a.s.
=

PY X

dPY PX

dPY X
(y,x). (74)

Proof: The proof follows along the same lines as the proof of
Theorem 10.

V. CONCLUSIONS AND FINAL REMARKS

This paper provides proofs for several well-known folklore
theorems, as well as some other lesser-known results in
information theory involving the Radon-Nikodym derivative.
Notably, these theorems serve as fundamental tools for estab-
lishing various properties of Shannon’s information measures
in a unified framework, that is, regardless of whether the
underlying measures admit a probability mass function or a
probability density function. Nonetheless, the proof of these
properties are left out of the scope of this paper, due to
space constraints. Finally, it is important to highlight that
the presented results hold in full generality, as the reference
measure is assumed to be any σ-finite measure.
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