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Abstract

Let S be a rational fraction and let f be a polynomial over a finite field. Consider
the transform T ( f ) = numerator( f (S )). In certain cases, the polynomials f , T ( f ),
T (T ( f )) . . . are all irreducible. For instance, in odd characteristic, this is the case for
the rational fraction S = (x 2 + 1)/(2x ), known as the R-transform, and for a positive
density of irreducible polynomials f . We interpret these transforms in terms of isogenies
of elliptic curves. Using complex multiplication theory, we devise algorithms to generate
a large number of rational fractions S , each of which yields infinite families of irreducible
polynomials for a positive density of starting irreducible polynomials f .

1 Introduction
Constructing finite fields depends on generating irreducible polynomials, with many appli-

cations to coding theory and cryptography focusing on the small-characteristic, large-degree
case. Various techniques have thus been developed to solve this problem [15, 10, 5] beyond
the standard trial-and-error method based on irreducibility testing. Further, selecting suit-
able irreducible polynomials is critical to obtain efficient finite field arithmetic which, again,
motivated the development of advanced techniques [1].

Here, we design fast algorithms to generate irreducible polynomials of large, smooth degree.
In fact, our algorithms generate infinite families of irreducible polynomials of increasing degree
for the divisibility order. This enables the construction of infinite towers of field extensions,
which yield explicit representations of “parts of ” the algebraic closure. Such towers also have
applications to the construction of high-order elements [4, 11] as well as to point counting
methods on algebraic curves [13].

We build upon the following approach.
Let S ∈�(x ) be a rational fraction and let k be a finite field where the reduction of the de-

nominator of S does not vanish, that is, the denominator is coprime to |k |. For any polynomial
f ∈ k [x ] we define the S -transform of f as the polynomial TS ( f ) = numerator ( f (S (x )))
and we let

IS ( f ) =
�
T i
S ( f )
�
i�0

denote the family of polynomials obtained by applying the composition of i copies of TS ,
which we denote by T i

S = TS ◦ · · · ◦ TS , to the polynomial f . We say that S induces an
irreducible family from f if the polynomials in the family IS ( f ) are all irreducible.
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Figure 1: On the left, the projection of an isogeny �0
ϕ←− �1 to its Lattès map S ; on the right,

the corresponding field extensions where the points satisfy P = ϕ(Q ).

For example, well-known transforms include the so-called Q -transform which uses the
rational fractionQ (x ) = x2+1

x and the so-called R-transform which uses the rational fraction
R(x ) = x2+1

2x ; more explicitly, we have

TQ ( f )(x ) = xdeg( f ) · f
�
x2 + 1
x

�
,

TR( f )(x ) = (2x )
deg( f ) · f
�
x2 + 1
2x

�
.

Those two transforms have been studied extensively and are known to induce irreducible
families.

Theorem1.1 (Q-transform [17, 12, 8]). Let q = 2r and let f (x ) =�ni=0 ai x i be an irreducible
polynomial in �q [x ] with an = 1. Denote by tr the trace from �q to �2. Assuming tr(an−1) =
tr(a1/a0) = 1, the fractionQ induces an irreducible family from f .

Theorem 1.2 (R-transform [4]). Let q be an odd prime power and let f be a monic irreducible
polynomial in�q [x ]. Assume that f (1) f (−1) is not a square in�q and, if q = 3 mod 4, assume
additionally that deg( f ) is even. The fraction R induces an irreducible family from f .

Recently, there has been interest in constructing more transforms T which induce irre-
ducible families. We note the work of Bassa and Menares using Galois theory on function
fields [2] and multiplicative group theory [3].

In this article we construct such transforms from isogenies of elliptic curves. Our main
results are algorithms which generate a large diversity of transforms.

2 General framework
We first explain the relationship between the transform TS and isogenies. Let �0

ϕ←− �1
be an isogeny of elliptic curves in Weierstrass form defined over a finite field k ; there exists
a rational fraction S such that ϕ(x , y) = (S (x ), ·). We define the degree of such a rational
fraction S = u/v with u , v ∈ k [x ] to be deg S =max{deg u , deg v}; this definition suits our
purpose since it yields the equalities degϕ = deg S and degTS ( f (x )) = deg S · deg f .
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Now, consider two points P ∈ �0(k ) and Q ∈ �1(k ) satisfying P = ϕ(Q ) and such that
[k (Q ) : k (P )] = degϕ. Denote by f (x ) ∈ k [x ] the minimal polynomial of xP over k . Since
f (S (xQ )) = f (xP ) = 0, the polynomial TS ( f (x )) vanishes on xQ ; it is therefore irreducible
if and only if it is the minimal polynomial of xQ or, equivalently, if its degree is that of the
extension [k (xQ ) : k ]. We have

TS ( f (x )) is irreducible
⇐⇒ degTS ( f (x )) = [k (xQ ) : k ]
⇐⇒ deg S · deg f = [k (xQ ) : k (xP )] · [k (xP ) : k ]
⇐⇒ degϕ = [k (xQ ) : k (xP )].

Since ϕ commutes with the involution endomorphism (x , y) �→ (x ,−y), quotienting out
by it yields the commutative diagram on the left of Figure 1 where the arrows to the projective
line are the projections of points to their x -coordinate. This induces the field extensions
diagram on the right of Figure 1 which shows

[k (Q ) : k (P )] · [k (P ) : k (xP )] = [k (Q ) : k (xQ )] · [k (xQ ) : k (xP )]
where [k (Q ) : k (P )] = degϕ; furthermore, the x -coordinate of points on an elliptic curve
satisfies [k (P ) : k (xP )] ∈ {1, 2} and [k (Q ) : k (xQ )] ∈ {1, 2}. We deduce that, if either degϕ
is odd or [k (P ) : k (xP )] = 2, then [k (xQ ) : k (xP )] = degϕ. Consequently, the polynomial
TS ( f (x )) is irreducible.

To iterate this construction, we require a criterion on the isogeny ϕ which ensures that
the condition [k (Q ) : k (P )] = degϕ holds under further compositions by ϕ. We begin with
a simple but key lemma which describes the action of the Frobenius endomorphism in explicit
terms.

Lemma 2.1. Let �0 and �1 be elliptic curves and �0
ϕ←− �1 be a separable isogeny defined over

a finite field k . Fix a point P ∈ �0(k ) and denote byπ the k (P )-Frobenius endomorphism on �1.
If all points in the kernel of ϕ are defined over k (P ), then there exists a point F ∈ kerϕ such that,
for all pointsQ ∈ ϕ−1(P ) and for all n ∈�, we haveπn(Q ) = Q + nF .

Proof. LetQ ∈ ϕ−1(P ) be a preimage of P ; we have

ϕ(π(Q )−Q ) = π(ϕ(Q ))−ϕ(Q ) = π(P )− P = 0.
Thus we haveπ(Q ) = Q + F for some point F ∈ kerϕ which does not depend onQ ; indeed,
for any otherQ � ∈ ϕ−1(P ), we have

π(Q �) = π(Q ) +π(Q � −Q ) = (Q + F ) + (Q � −Q ) = Q � + F.
Applyingπ iteratively yields

πn(Q ) = πn−1(Q + F ) = πn−1(Q ) + F = · · · = Q + nF.

We deduce the theorem below which gives precisely the criterion we required.
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Theorem 2.2. Let �0
ϕ0←− �1

ϕ1←− �2 be two separable isogenies of respective degree ℓ0 and ℓ1
defined over a finite field k . Suppose that all prime factors of ℓ1 divide ℓ0. Fix a point P ∈ �0(k )
and assume that the kernel ker(ϕ0 ◦ϕ1) is cyclic and that all its points are k (P )-rational. Then, all
pointsQ ∈ (ϕ0 ◦ϕ1)−1(P ) satisfying [k (ϕ1(Q )) : k (P )] = ℓ0 also satisfy [k (Q ) : k (P )] = ℓ0ℓ1.
Proof. SinceG = ker(ϕ0◦ϕ1) is a cyclic subgroup of�2(k (P )) of order ℓ0ℓ1, it admits a unique
subgroup of order ℓ1, namely ℓ0 ·G , which by uniqueness is equal to kerϕ1. Denote byπ the
k (P )-Frobenius endomorphism on �2. By Lemma 2.1, there exists a point F ∈ G satisfying
πn(Q ) = Q + nF . In particular, its order is ord(F ) = [k (Q ) : k (P )]. Since π(ϕ1(Q )) =
ϕ1(π(Q )) = ϕ1(Q +F ) = ϕ1(Q )+ϕ1(F ), we similarly have [k (ϕ1(Q )) : k (P )] = ord(ϕ1(F )).

Assume now [k (ϕ1(Q )) : k (P )] = ℓ0, that is, ord(ϕ1(F )) = ℓ0. We claim ord(F ) = ℓ0ℓ1.
Suppose otherwise that ord(F ) < ℓ0ℓ1. Then, we can write F = p ·T for some T ∈ G and
some prime p dividing ℓ0ℓ1. As all prime divisors of ℓ1 are divisors of ℓ0, we have p | ℓ0. This
implies ℓ0/p · F = ℓ0 ·T ∈ ℓ0 ·G = kerϕ1, that is, ϕ1(F ) is an ℓ0/p -torsion point of �1; this
contradicts ord(ϕ(F )) = ℓ0. We thus obtain ord(F ) = ℓ0ℓ1 = [k (Q ) : k (P )] as claimed.

Note that the simplest setting where this result can be iterated is when �0 = �1 = �2 and
the endomorphisms ϕ0 and ϕ1 are identical. This yields the following corollary where we
assume that degϕ is odd for simplicity.

Corollary 2.3. Let � be an elliptic curve, ϕ : � → � a separable endomorphism of odd degree
defined over a finite field k , and P ∈ � (k ) a point. Suppose that the subgroup ker(ϕ ◦ϕ) is cyclic
and that all its points are k (P )-rational. Denote by S the x -coordinate map of ϕ and by f the
minimal polynomial of xP over k . Then, if TS ( f ) is irreducible, so are all polynomials in the
family IS ( f ).

The map S is what is known as a Lattès map [9]: it is the projection of an endomorphism
ϕ : � → � through a finite separable cover � → �1, in this case, the projection on the
x -coordinate.

Remark 2.4. The condition that ker(ϕ ◦ϕ) be cyclic is equivalent to no isogeny factor of ϕ being
dual to another. This holds whenever deg(ϕ) is squarefree. Indeed, if a factor ψ were dual to
another, it would necessarily be itself and we would then have 2ψ = ψ + �ψ = [trψ]; taking
determinants shows that degψ would be a square, which contradicts the assumption.

2.1 Möbius transforms
For anymatrixm in the linear groupGL2(�) of invertible two-by-twomatrices with integer

coefficients, define the rational fraction

Mm(x ) =
αx +β
γ x +δ

, where m =
�
α β

γ δ

�
.

If S is a rational fraction in�(x ), we define the corresponding Möbius transform of S as the
composition S � = Mm−1 ◦ S ◦Mm . Note that the fraction S induces an irreducible family
from a given polynomial f if and only if S � does. Thus we may apply Möbius transforms to
any rational fraction while preserving its ability to induce irreducible families, for instance in
order to try and reduce the size of its coefficients.
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Input: An elliptic curve � defined over a finite field �q .
Output: The x -coordinate map of the Verschiebung endomorphism.

1. Compute the division polynomial ϕq (x )
for the multiplication-by-q map on � .

2. Return ϕq (x1/q ).

Algorithm 1: Computing the Lattès map of the Verschiebung endomorphism of an elliptic
curve defined over a finite field.

Our efforts will from now on be focused on finding isogenies ϕ : � → � which satisfy
the conditions of Corollary 2.3 and obtaining the corresponding rational fractions S ; we will
purposely not look for associated points P and polynomials f . Nevertheless, in Section 6, we
will compute for each selected rational fraction S , the density of irreducible polynomials of
a given degree in a given finite field for which S induces irreducible families.

3 The Verschiebung endomorphism
Let ϕ : � → � be a separable endomorphism of prime degree ℓ defined over a finite field

k = �q . In this section we consider the case where ℓ divides q . Since the multiplication-by-q
map satisfies [q ] = π �π, the endomorphism is either a factor of the Frobenius π, which is
purely inseparable, or of its dual, the Verschiebung �π, which is separable if and only if the
elliptic curve � is ordinary.

We thus specialize Corollary 2.3 to the case ϕ = �π. By Remark 2.4, when q is prime, the
condition that ker(ϕ ◦ϕ) be cyclic holds. We obtain:

Proposition 3.1. Let � be an ordinary elliptic curve defined over a prime field �p with p > 2.
Denote by S the x -coordinate map of its Verschiebung endomorphism �π. The rational fraction S
induces irreducible families from all polynomials f which:

• are minimal polynomials of the x -coordinate of some P ∈ � (k ) such that ker(�π ◦ �π) ⊂
� (k (P )); and

• verify that TS ( f ) is irreducible.

In order to compute the x -coordinate of the Verschiebung endomorphism on an elliptic
curve � , we use Algorithm 1.

Table 1 gives rational fractions obtained using this algorithm, including by composing with
theMöbius map. More specifically, for small q = |k |, it gives the numberN of such transforms
and a representative element selected for having lowest Hamming weight. We include the case
q = 2d since, while not covered by Proposition 3.1, it still induces irreducible families.

Note that for q = 2 this method yields the well-knownQ -transform.

4 Isogenies of ordinary curves over finite fields
We now turn to separable endomorphisms ϕ : � → � of squarefree degree ℓ which are

coprime to the characteristic. Elliptic curves �/�q which admit such endomorphisms may be
efficiently enumerated as their j -invariants are exactly the roots of the modular polynomial
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q N representative fraction

2 6 x/(x2 + 1)
4 180 (x4 + x2 + 1)/(x3 + x )
8 3528 (x7 + x )/(x8 + x6 + x4 + x2 + 1)
3 36 (x3 + x2 + x + 2)/x2

5 345 (2x5 + x )/(x4 + 2)
7 1428 (5x7 + x4 + 6x )/(x6 + x3 + 3)
11 8250 (8x11 + x9 + 7x7 + 4x3 + 10x )/(x10 + x8 + 2x4 + 7x2 + 8)

Table 1: Some rational fractions which induce irreducible families, computed as Lattès maps
of Verschiebung endomorphisms.

Φℓ (X ,X ) ∈ �q [X ]. Vélu’s formula [18] can then be used to compute ϕ from its kernel, itself
found as a subgroup of � [ℓ](�q ).

The situation is particularly explicit when�/�q is ordinary. Its endomorphism ringEnd(� )
is then an order in the imaginary quadratic field K = �(π) containing �[π]. Isogenies
ϕ : � → �� of prime degree ℓ � q fall into one of two categories:

1. So-called horizontal isogenies satisfy End(� ) = End(� �) and are described by the
theory of complex multiplication [14] which states that the ideal class group cl(� ) acts
faithfully and transitively on the set of isomorphism classes of elliptic curves� satisfying
End(� ) � � .

2. Other prime-degree isogenies are said to be vertical and display the so-called volcano
structure [7, 6].

Connected components of degree-ℓ isogeny graphs thus have the shape illustrated by
Figure 2: elliptic curves with locally maximal endomorphism ring are connected by horizontal
isogenies which form a cycle (the rim of the volcano) of length the order in the class group
of an ideal of norm ℓ ; other elliptic curves are located on trees formed of vertical isogenies
hanging from maximal curves; the graph is regular of degree ℓ + 1 except at the leaves.

Let us now state two applications of this structure to the construction of endomorphisms
which satisfy the hypothesis of Corollary 2.3.

4.1 Endomorphisms of prime degree
Let � be an ordinary elliptic curve defined over a finite field. By complex multiplication

theory, endomorphisms ϕ : � → � of prime degree ℓ correspond to principal ideals of order
ℓ in the class group of End(� ). By Remark 2.4, the resulting subgroup ker(ϕ ◦ ϕ) is always
cyclic.

Concretely, given a prime power q and a prime ℓ , we construct such endomorphisms by
looking for small discriminantsΔ for which ℓ splits into primes of order one in the class group
of�(
�
Δ); we then use the Hilbert class polynomial HΔ to generate elliptic curves over �q

with endomorphism algebra�(
�
Δ); finally, we compute the corresponding degree-ℓ isogeny

and extract its x -coordinate.
This yields Table 2 where, again, we select the lowest Hamming-weight representative for

each rational fraction S under Möbius action.
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Figure 2: A connected component of a degree-2 isogeny graph displaying the so-called volcano
structure; the order in the class group of both primes of norm two is four (the length of the
rim) and the conductor [�K : �[π]] has valuation three at two (the height of the trees).

q ℓ representative fraction

2 3 (x3 + 1)/x2

5 3 x/(x3 + x2 + 1)
7 5 (x5 + x4 + x3 + 6x2 + x )/(x4 + x3 + 4x2 + x + 1)
11 2 x/(x2 + 1)
11 5 (x5 + 9x4 + 10x3 + 4x + 1)/(x5 + x3 + 9)
17 5 (15x5 + 3x3 + x )/(x5 + 3x4 + 15x3 + x2 + 1)

Table 2: Some rational fractions which induce irreducible families, computed as cyclic endo-
morphisms of prime degree.
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q representative fraction

2 (x7 + x3 + x )/(x9 + x6 + x5 + x2 + 1)
7 (2x10 + 4x9 + x6 + x5 + 3x4 + 2x + 3)/(x9 + 6x8 + 5x5 + x2 + 4x )

17 (13x9 + 4x7 + x5 + 8x )/(x8 + 13x4 + 11x2 + 15)
17 (9x9 + 3x7 + 13x5 + 10x3 + 9x )/(x8 + x6 + x4 + 4x2 + 4)
19 (11x4 + 17x2 + 8)/(x4 + 1)
19 (18x9 + x7 + 14x5 + 11x3 + 12x )/(x10 + 5x8 + x6 + 7x4 + 5x2 + 11)
19 (13x5 + 10x3 + 10x )/(x6 + 1)
19 (11x3 + 11x )/(x4 + 1)
19 (16x3 + x )/(x4 + 4x2 + 17)
19 (16x10 + 13x6 + 12x4 + 1)/(x9 + x7 + 10x5 + 4x3 + 16x )
19 (8x6 + 14x4 + 14x2 + 8)/(x5 + x3 + x )
19 (x4 + 7)/(x4 + 14x2 + 12)

Table 3: Some rational fractions which induce irreducible families, computed as cyclic endo-
morphisms of small degree.

4.2 Endomorphisms of small degree
Endomorphisms of ordinary elliptic curve � defined over finite fields may also be con-

structed by composing multiple horizontal isogenies which form a cycle in the isogeny graph.
That boils down to searching for products of prime ideals which are principal in the class group
ofEnd(� ); the corresponding isogeny cycle can then be constructed via complexmultiplication
theory.

Here, we simply search for such endomorphisms, select those with cyclic kernel and small
degree, and apply Möbius transforms to reduce the Hamming weight of the rational fraction
describing their action on the x -coordinate. Among others, we find the rational fractions of
Table 3. Note that, as expected, the number of rational fractions this generates grows with q .

5 Isogenies of ordinary curves over number fields
Let � be an elliptic curve defined over a number fieldK which admits a rational endomor-

phism α : � → � with cyclic kernel. For all places p of good reduction where the localization
of α still has cyclic kernel, the reduction of α to K /p yields an endomorphism ϕ1 to which
Theorem 2.2 may be applied. By the Cebotarev density theorem, the rational fraction defining
α in characteristic zero can thus be applied to a positive density of finite fields.

Endomorphisms of degree two. The simplest case concerns elliptic curves defined over the
rationals and endowed with an endomorphism of degree two. Their j -invariants are the roots
of the modular polynomial Φ2( j , j ) and their endomorphisms can be computed explicitly,
resulting in the following theorem. See, for instance, [16, Proposition 2.3.1].

Proposition 5.1. There are exactly three isomorphism classes of elliptic curves over � which
possess an endomorphism of degree 2. The following are representatives for these curves and
endomorphisms.
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d = 2 d = 3 d = 4 d = 5 d = 6
i = 0 1/3 1/2 4/9 1/2 14/29
i = 1 0 1/2 0 1/2 0
i =∞ 2/3 0 5/9 0 15/29

Table 4: Density of irreducible polynomials of degree d over �3 which remain irreducible
under only just i iterations of the map TS where S = (x2 + 1)/x .

(i) E : y2 = x3 + x , j = 1728, α = 1+
�−1,

[α](x , y) =
�
α−2
�
x + 1

x

�
,α−3 y
�
1− 1

x2
��

;

(ii) E : y2 = x3 + 4x2 + 2x , j = 8000, α =
�−2,

[α](x , y) =
�
α−2
�
x + 4+ 2

x

�
,α−3 y
�
1− 2

x2
��

;

(iii) E : y2 = x3 − 35x + 98, j = −3375, α =
1+
�−7
2

,

[α](x , y) =
�
α−2
�
x − 7(1−α)4

x +α2 − 2
�
,α−3 y
�
1+

7(1−α)4
(x +α2 − 2)2
��

.

We note that the first endomorphism corresponds to the well-knownQ -transform.

Endomorphisms of degree three. The same approach applies to higher-degree endomor-
phisms although the explicit formulas describing them are much heavier that in the above
degree-two case.

Consider for instance the elliptic curve E : y2 + 6x y + 4y = x3 with j -invariant 54000.
Since it is a root of the modular polynomial Φ3( j , j ), it admits a degree-three endomorphism.
Indeed, this endomorphism can be written explicitly as ϕ ◦φ where α = 1+

�−3
2 and

φ(x , y) =
�
x + 24

x
+
16
x2

, y − 64
x3
− 24(6x + y + 4)

x2

�
,

ϕ(x , y) =
�
−1
3
x − 4, − 1

3
�−3 y +

3−�−3
3

x − 2
3
�−3 + 10
�
.

6 Density of irreducible families
Let S be a rational fraction over a fixed finite field �q . We are interested in computing

the density of irreducible polynomials f of small degree d from which S induces irreducible
families. Through the Cebotarev density theorem, the conditions Corollary 2.3 may be used
to compute these densities asymptotically. However this is burdensome and thus most entries
in the tables below were obtained through exhaustive computations.

First consider the rational fraction S = (x2 + 1)/x over �3. Table 4 indicates, for selected
integers i and d , the density of irreducible polynomials of degree d which remain irreducible
under only just i iterations of the transform S . Each column adds up to one.

In Table 5, we only give the density of irreducible polynomials of degree d over �q from
which the rational fraction S induces irreducible families. In the particular case where S =
(x2 + 1)/x and q = 3, this corresponds to the line i =∞ of Table 4.
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S = x2 + 1
x

d = 2 d = 3 d = 4 d = 5 d = 6
q = 2 1 0 1/3 1/3 2/9
q = 3 2/3 0 5/9 0 15/29
q = 5 0 0 0 0 0
q = 7 8/21 0 12/49 0 ≈ 0.25
q = 11 8/55 ≈ 0.12 ≈ 0.13 ≈ 0.12 ≈ 0.12
q = 13 2/13 11/91 ≈ 0.13 ≈ 0.13 ≈ 0.13

S = 1
2
x2 + 1
x

d = 2 d = 3 d = 4 d = 5 d = 6
q = 3 2/3 0 5/9 0 15/29
q = 5 3/5 1/2 13/25 1/2 ≈ 0.50
q = 7 4/7 0 25/49 0 ≈ 0.50
q = 11 6/11 0 ≈ 0.50 0 ≈ 0.50
q = 13 7/13 1/2 ≈ 0.50 1/2 ≈ 0.50
q = 17 9/17 1/2 ≈ 0.50 1/2 ≈ 0.50

S = α−2
�
x − 7(1−α)4

x +α2 − 2
�
where α =

1+
�−7
2

d = 2 d = 3 d = 4 d = 5 d = 6
q = 11 16/55 13/55 ≈ 0.26 ≈ 0.25 ≈ 0.25
q = 23 ≈ 0.25 ≈ 0.25 ≈ 0.25 ≈ 0.25 ≈ 0.25
q = 29 8/29 ≈ 0.25 ≈ 0.25 ≈ 0.25 ≈ 0.25
q = 37 ≈ 0.26 ≈ 0.25 ≈ 0.25 ≈ 0.25 ≈ 0.25
q = 43 ≈ 0.25 ≈ 0.25 ≈ 0.25 ≈ 0.25 ≈ 0.25
q = 53 ≈ 0.26 ≈ 0.25 ≈ 0.25 ≈ 0.25 ≈ 0.25

Table 5: Density of irreducible polynomials of degree d over �q from which the rational
fraction S induces irreducible families.
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