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Abstract—Closed-form expressions are presented for the variation
of the expectation of a given function due to changes in the
probability measure used for the expectation. They unveil inter-
esting connections with Gibbs probability measures, the mutual
information, and the lautum information.

I. INTRODUCTION

Let m be a positive integer and denote by4(Rm) the set of all
probability measures on the measurable space (Rm,B (Rm)),
with B (Rm) being the Borel σ-algebra on Rm. Given a
Borel measurable function h : Rn × Rm → R, consider the
functional Gh : Rn×4(Rm)×4(Rm)→ R such that

Gh (x, P1, P2) =

∫
h(x, y)dP1(y)−

∫
h(x, y)dP2(y), (1)

which quantifies the variation of the expectation of the measur-
able function h due to changing the probability measure from
P2 to P1. Such a functional is defined when both integrals
exist and are finite.

In order to define the expectation of Gh (x, P1, P2) with
respect to x, the structure formalized below is required.

Definition 1: A family PY |X , (PY |X=x)x∈Rn of elements of
4(Rm) indexed by Rn is said to be a conditional probability
measure if, for all sets A ∈ B (Rm), the map

Rn → [0, 1]

x 7→ PY |X=x(A)

is Borel measurable. The set of all such conditional probability
measures is denoted by 4 (Rm|Rn).

In this setting, consider the functional Ḡh : 4 (Rm|Rn) ×
4 (Rm|Rn)×4 (Rn)→ R such that

Ḡh
Ä
P

(1)
Y |X , P

(2)
Y |X , PX

ä
=

∫
Gh
Ä
x, P

(1)
Y |X=x, P

(2)
Y |X=x

ä
dPX(x). (2)

This quantity can be interpreted as the variation of the
integral (expectation) of the function h when the proba-
bility measure changes from the joint probability measure
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P
(1)
Y |XPX to another joint probability measure P

(2)
Y |XPX ,

both in 4 (Rm ×Rn). This follows from (2) by observing
that

Ḡh
Ä
P

(1)
Y |X , P

(2)
Y |X , PX

ä
=

∫
h(x, y)dP

(1)
Y |XPX(y, x)−

∫
h(x, y)dP

(2)
Y |XPX(y, x). (3)

Special attention is given to the quantity Ḡh
(
PY , PY |X , PX

)
,

for some PY |X ∈ 4 (Rm|Rn), with PY being the marginal of
the joint probability measure PY |X · PX . That is, for all sets
A ∈ B (Rm),

PY (A) =

∫
PY |X=x (A) dPX(x). (4)

Its relevance stems from the fact that it captures the variation
of the expectation of the function h when the probability
measure changes from the joint probability measure PY |XPX
to the product of its marginals PY PX . That is,

Ḡh
(
PY , PY |X , PX

)
=

∫ Å∫
h(x, y)dPY (y)−

∫
h(x, y)dPY |X=x(y)

ã
dPX(x)

=

∫
h(x, y)dPY PX(y, x)−

∫
h(x, y)dPY |XPX(y, x). (5)

A. Contributions

This work makes two key contributions: First, a closed-
form expression for the variation Gh (x, P1, P2) in (1) is
provided for a fixed x ∈ Rn and two arbitrary mea-
sures P1 and P2, expressed in terms of information measures.
Second, a closed-form expression for the expected varia-
tion Ḡh

Ä
P

(1)
Y |X , P

(2)
Y |X , PX

ä
in (2) is presented also in terms

of information measures, for arbitrary conditional probability
measures P (1)

Y |X and P (2)
Y |X , along with an arbitrary probability

measure PX .

As a byproduct, specific closed-form expressions are provided
for the variation Ḡh

(
PY , PY |X , PX

)
in (5) in terms of both

mutual information [1], [2], and lautum information [3]. The
specific case in which PY |X is a Gibbs conditional probability
measure is highlighted as Ḡh

(
PY , PY |X , PX

)
is equal (up to

a constant factor) to the sum of mutual and lautum information
of the joint probability measure PY |XPX .



B. Relevance and Applications

The relevance of the study of the variation of the integral
(expectation) of h (for some fixed x ∈ Rn) due to a measure
change from P2 to P1, i.e., the value Gh (x, P1, P2) in (1),
is evidenced by its central role in the definition of integral
probability metrics (IPMs) [4], [5]. Using the notation in (1),
an IPM results from the optimization problem

sup
h∈H
|Gh (x, P1, P2)| , (6)

for some fixed x ∈ Rn and a particular class of functions H.
Note for instance that the maximum mean discrepancy is an
IPM [6], as well as the Wasserstein distance of order one [7]–
[10].

Other areas of mathematics in which the varia-
tion Gh (x, P1, P2) in (1) plays a key role is distributionally
robust optimization (DRO) [11], [12] and optimization with
relative entropy regularization [13], [14]. In these areas, the
variation Gh (x, P1, P2) is a central tool. See for instance,
[15], [16].

Variations of the form Gh (x, P1, P2) in (1) have also been
studied in [17] and [18] in the particular case of statisti-
cal machine learning for the analysis of generalization er-
ror. The central observation is that the generalization er-
ror of machine learning algorithms can be written in the
form Ḡh

(
PY , PY |X , PX

)
in (5). This observation is the main

building block of the method of gaps introduced in [18],
which leads to a number of closed-form expressions for
the generalization error involving mutual information, lautum
information, among other information measures.

The results of the present paper unify and generalize many
special cases that were obtained in some of the articles
discussed above.

II. PRELIMINARIES

The main results presented in this work involve Gibbs condi-
tional probability measures. Such measures are parametrized
by a Borel measurable function h : Rn × Rm → R; a σ-
finite measure Q on Rm; and a vector x ∈ Rn. Note
that the variable x will remain inactive until Section IV.
Although it is introduced now for consistency, it could be
removed altogether from all results presented in this section
and Section III.

Denote by Kh,Q,x : R→ R the function that satisfies

Kh,Q,x (t) = log

Å∫
exp (t h(x, y)) dQ (y)

ã
. (7)

Under the assumption that Q is a probability measure, the
function Kh,Q,x in (7) is the cumulant generating function of
the random variable h(x, Y ), for some fixed x ∈ Rn and Y ∼
Q. Using this notation, the definition of the Gibbs conditional
probability measure is presented hereunder.

Definition 2 (Gibbs Conditional Probability Measure): Given
a Borel measurable function h : Rn × Rm → R; a σ-
finite measure Q on Rm; and a λ ∈ R, the probability
measure P (h,Q,λ)

Y |X ∈ 4 (Rm|Rn) is said to be an (h,Q, λ)-
Gibbs conditional probability measure if

∀x ∈ Rn, Kh,Q,x (−λ) < +∞; (8)

and for all (x, y) ∈ Rn ×Rm,

dP
(h,Q,λ)
Y |X=x

dQ
(y) = exp (−λh (x, y)− Kh,Q,x (−λ)) , (9)

where the function Kh,Q,x is defined in (7).

Note that, while P
(h,Q,λ)
Y |X is an (h,Q, λ)-Gibbs conditional

probability measure, the measure P (h,Q,λ)
Y |X=x , obtained by con-

ditioning it upon a given vector x ∈ Rn, is referred to as
an (h,Q, λ)-Gibbs probability measure.

Condition 8 is easily met under certain conditions. For in-
stance, if h is a nonnegative function and Q is a finite
measure, then it holds for all λ ∈ (−∞, 0). Let 4Q (Rm) ,
{P ∈ 4 (Rm) : P � Q}, with P � Q standing for “P
absolutely continuous with respect to Q”. The relevance
of (h,Q, λ)-Gibbs probability measures relies on the fact
that under some conditions, they are the unique solutions to
problems of the form,

min
P∈4Q(Rm)

∫
h(x, y)dP (y) +

1

λ
D (P‖Q) , and (10)

max
P∈4Q(Rm)

∫
h(x, y)dP (y) +

1

λ
D (P‖Q) , (11)

where λ ∈ R \ {0}, x ∈ R, and D (P‖Q) denotes the relative
entropy (or KL divergence) of P with respect to Q.

Lemma 1: Assume that the optimization problem in (10)
(respectively, in (11)) admits solutions. Then, if λ > 0

(respectively, if λ < 0), the probability measure P (h,Q,λ)
Y |X=x in

(9) is the unique solution.

Proof: The uniqueness of the solutions to the optimization
problems in (10) and (11) arises from the nature of their
objective functions: the objective function in (10) is strictly
convex with respect to the measure P when λ > 0, while
the function in (11) is strictly concave when λ < 0. See
for instance, [13, Theorem 2]. The proofs that these unique
solutions correspond to (h,Q, λ)-Gibbs probability measures
follow the same approach as the proofs of [13, Theorem 3]
and [17, Theorem 1].

The following lemma highlights a key property of (h,Q, λ)-
Gibbs conditional probability measures.



Lemma 2: Given an (h,Q, λ)-Gibbs probability measure,
denoted by P (h,Q,λ)

Y |X=x , with x ∈ Rn,

− 1

λ
Kh,Q,x (−λ)

=

∫
h(x, y)dP

(h,Q,λ)
Y |X=x (y) +

1

λ
D
Ä
P

(h,Q,λ)
Y |X=x ‖Q

ä
(12)

=

∫
h(x, y)dQ (y)− 1

λ
D
Ä
Q‖P (h,Q,λ)

Y |X=x

ä
; (13)

moreover, if λ > 0, this further equals

= min
P∈4Q(Rm)

∫
h(x, y)dP (y) +

1

λ
D (P‖Q) ; (14)

alternatively, if λ < 0,

= max
P∈4Q(Rm)

∫
h(x, y)dP (y) +

1

λ
D (P‖Q) , (15)

where the function Kh,Q,x is defined in (7).

Proof: The proof of (12) follows from taking the loga-
rithm of both sides of (9) and integrating with respect
to P

(h,Q,λ)
Y |X=x . As for the proof of (13), it follows by noticing

that for all (x, y) ∈ Rn × suppQ, the Radon-Nikodym

derivative
dP

(h,Q,λ)

Y |X=x

dQ (y) in (9) is strictly positive. Thus,

dQ

dP
(h,Q,λ)

Y |X=x

(y) =

Å
dP

(h,Q,λ)

Y |X=x

dQ (y)

ã−1
. Hence, taking the negative

logarithm of both sides of (9) and integrating with respect to Q
leads to (13). Finally, the equalities in (14) and (15) follow
from Lemma 1 and (12).

The following lemma introduces the main building block
of this work, which is a characterization of the devia-
tion Gh

Ä
x, P, P

(h,Q,λ)
Y |X=x

ä
.

Lemma 3: Consider an (h,Q, λ)-Gibbs probability measure,
denoted by P (h,Q,λ)

Y |X=x ∈ 4 (Rm), with λ 6= 0 and x ∈ R. For
all P ∈ 4Q (Rm),

Gh
Ä
x, P, P

(h,Q,λ)
Y |X=x

ä
=

1

λ

Ä
D
Ä
P‖P (h,Q,λ)

Y |X=x

ä
+D

Ä
P

(h,Q,λ)
Y |X=x ‖Q

ä
−D (P‖Q)

ä
. (16)

Proof: The proof follows by noticing that for all P ∈
4Q (Rm),

D
Ä
P‖P (h,Q,λ)

Y |X=x

ä
=

∫
log

Ñ
dP

dP
(h,Q,λ)
Y |X=x

(y)

é
dP (y) (17)

=

∫
log

Ñ
dQ

dP
(h,Q,λ)
Y |X=x

(y)
dP

dQ
(y)

é
dP (y) (18)

=

∫
log

Ñ
dQ

dP
(h,Q,λ)
Y |X=x

(y)

é
dP (y) +D (P‖Q) (19)

=λ

∫
h(x, y)dP (y) + Kh,Q,x (−λ) +D (P‖Q) (20)

=λGh
Ä
x, P, P

(h,Q,λ)
Y |X=x

ä
−D

Ä
P

(h,Q,λ)
Y |X=x ‖Q

ä
+D (P‖Q) , (21)

where (20) follows from (9); and (21) follows from (12).

It is interesting to highlight that Gh
Ä
x, P, P

(h,Q,λ)
Y |X=x

ä
in (16)

characterizes the variation of the function h(x, ·) : Rm →
R from the solutions to the optimization problems in (10)
and (11), if they exist, to an alternative measure P .

III. CHARACTERIZATION OF Gh (x, P1, P2) IN (1)

The main result of this section is the following theo-
rem.

Theorem 4: For all probability measures P1 and P2, both ab-
solutely continuous with respect to a given σ-finite measure Q
on Rm, the variation Gh (x, P1, P2) in (1) satisfies,

Gh (x, P1, P2) =
1

λ

Å
D
Ä
P1‖P (h,Q,λ)

Y |X=x

ä
−D

Ä
P2‖P (h,Q,λ)

Y |X=x

ä
+D (P2‖Q)−D (P1‖Q)

ã
, (22)

where the probability measure P
(h,Q,λ)
Y |X=x , with λ 6= 0, is

an (h,Q, λ)-Gibbs probability measure.

Proof: The proof follows from Lemma 3 and by ob-
serving that Gh (x, P1, P2) = Gh

Ä
x, P1, P

(h,Q,λ)
Y |X=x

ä
−

Gh
Ä
x, P2, P

(h,Q,λ)
Y |X=x

ä
.

Theorem 4 might be particularly simplified in the case in
which the reference measure Q is a probability measure.
Consider for instance the case in which P1 is absolutely
continuous with respect to P2 (or P2 is absolutely continuous
with respect to P1). In such a case, the reference measure
might be chosen as P2 (or P1), as shown hereunder.

Corollary 5: Consider the variation Gh (x, P1, P2) in (1). If the
probability measure P1 is absolutely continuous with respect
to P2, then,

Gh (x, P1, P2) =
1

λ

Å
D
Ä
P1‖P (h,P2,λ)

Y |X=x

ä
−D

Ä
P2‖P (h,P2,λ)

Y |X=x

ä
−D (P1‖P2)

ã
. (23)

Alternatively, if the probability measure P2 is absolutely
continuous with respect to P1, then,

Gh (x, P1, P2) =
1

λ

Å
D
Ä
P1‖P (h,P1,λ)

Y |X=x

ä
−D

Ä
P2‖P (h,P1,λ)

Y |X=x

ä
+D (P2‖P1)

ã
, (24)

where the probability measures P (h,P1,λ)
Y |X=x and P

(h,P2,λ)
Y |X=x are

respectively (h, P1, λ)- and (h, P2, λ)-Gibbs probability mea-
sures, with λ 6= 0.

In the case in which neither P1 is absolutely continuous with
respect to P2; nor P2 is absolutely continuous with respect
to P1, the reference measure Q in Theorem 4 can always be



chosen as a convex combination of P1 and P2. That is, for all
Borel sets A ∈ B (Rm), Q (A) = αP1 (A) + (1− λ)P2 (A),
with α ∈ (0, 1).

Theorem 4 can be specialized to the specific cases in which
Q is the Lebesgue or the counting measure.
a) If Q is the Lebesgue measure: the probability mea-
sures P1 and P2 in (22) admit probability density func-
tions f1 and f2, respectively. Moreover, the terms −D (P1‖Q)
and −D (P2‖Q) are Shannon’s differential entropies [1] in-
duced by P1 and P2, denoted by h(P1) and h(P2), respectively.
That is, for all i ∈ {1, 2},

h(Pi) , −
∫
fi(x) log fi(x)dx. (25)

The probability measure P
(h,Q,λ)
Y |X=x , with λ 6= 0, x ∈ Rn,

and Q the Lebesgue measure, possesses a probability density
function, denoted by f

(h,Q,λ)
Y |X=x : Rm → (0,+∞), which

satisfies

f
(h,Q,λ)
Y |X=x (y)=

exp (−λh(x, y))∫
exp (−λh(x, y)) dy

. (26)

b) If Q is the counting measure: the probability measures P1

and P2 in (22) admit probability mass functions p1 : Y →
[0, 1] and p2 : Y → [0, 1], with Y a countable subset
of Rm. Moreover, −D (P1‖Q) and −D (P2‖Q) are respec-
tively Shannon’s discrete entropies [1] induced by P1 and P2,
denoted by H(P1) and H(P2), respectively. That is, for all i ∈
{1, 2},

H(Pi) , −
∑
y∈Y

pi(y) log pi(y). (27)

The probability measure P
(h,Q,λ)
Y |X=x , with λ 6= 0 and Q the

counting measure, possesses a conditional probability mass
function, denoted by p

(h,Q,λ)
Y |X=x : Y → (0,+∞), which satis-

fies

p
(h,Q,λ)
Y |X=x(y)=

exp (−λh(x, y))∑
y∈Y exp (−λh(x, y))

. (28)

IV. CHARACTERIZATIONS OF Ḡh
Ä
P

(1)
Y |X , P

(2)
Y |X , PX

ä
IN (2)

The main result of this section is a characterization
of Ḡh

Ä
P

(1)
Y |X , P

(2)
Y |X , PX

ä
in (2).

Theorem 6: Consider the variation Ḡh
Ä
P

(1)
Y |X , P

(2)
Y |X , PX

ä
in (2) and assume that for all x ∈ Rn, the probability
measures P (1)

Y |X=x and P (2)
Y |X=x are both absolutely continuous

with respect to a σ-measure Q. Then,

Ḡh
Ä
P

(1)
Y |X , P

(2)
Y |X , PX

ä
=

1

λ

∫ Å
D
Ä
P

(1)
Y |X=x‖P

(h,Q,λ)
Y |X=x

ä
−D

Ä
P

(2)
Y |X=x‖P

(h,Q,λ)
Y |X=x

ä
+D
Ä
P

(2)
Y |X=x‖Q

ä
−D

Ä
P

(1)
Y |X=x‖Q

äã
dPX(x), (29)

where the probability measure P
(h,Q,λ)
Y |X , with λ 6= 0, is

an (h,Q, λ)-Gibbs conditional probability measure.

Proof: The proof follows from (2) and Theorem 4.

Note that, from (2), it follows that the general expression
for the expected variation Ḡh

Ä
P

(1)
Y |X , P

(2)
Y |X , PX

ä
might be

simplified according to Corollary 5. For instance, if for
all x ∈ Rm, the probability measure P

(1)
Y |X=x is absolutely

continuous with respect to P
(2)
Y |X=x, the measure P

(2)
Y |X=x

can be chosen to be the reference measure in the calculation
of Gh

Ä
x, P

(1)
Y |X=x, P

(2)
Y |X=x

ä
in (2). This observation leads to

the following corollary of Theorem 6.

Corollary 7: Consider the variation Ḡh
Ä
P

(1)
Y |X , P

(2)
Y |X , PX

ä
in (2) and assume that for all x ∈ Rn, the probabil-
ity measures P (1)

Y |X=x is absolutely continuous with respect

to P (2)
Y |X=x. Then,

Ḡh
Ä
P

(1)
Y |X , P

(2)
Y |X , PX

ä
=

1

λ

∫ (
D

Å
P

(1)
Y |X=x‖P

Ä
h,P

(2)

Y |X=x
,λ
ä

Y |X=x

ã
−D
Å
P

(2)
Y |X=x‖P

Ä
h,P

(2)

Y |X=x
,λ
ä

Y |X=x

ã
−D
Ä
P

(1)
Y |X=x‖P

(2)
Y |X=x

ä)
dPX(x). (30)

Alternatively, if for all x ∈ Rn, the probability mea-
sure P (2)

Y |X=x is absolutely continuous with respect to P (1)
Y |X=x,

then,

Ḡh
Ä
P

(1)
Y |X , P

(2)
Y |X , PX

ä
=

1

λ

∫ (
D

Å
P

(1)
Y |X=x‖P

Ä
h,P

(1)

Y |X=x
,λ
ä

Y |X=x

ã
−D
Å
P

(2)
Y |X=x‖P

Ä
h,P

(1)

Y |X=x
,λ
ä

Y |X=x

ã
+D
Ä
P

(2)
Y |X=x‖P

(1)
Y |X=x

ä)
dPX(x), (31)

where the measures P

Ä
h,P

(1)

Y |X=x
,λ
ä

Y |X=x and P

Ä
h,P

(2)

Y |X=x
,λ
ä

Y |X=x

are (h, P
(1)
Y |X=x, λ)- and (h, P

(2)
Y |X=x, λ)-Gibbs probability

measures, respectively.

The Gibbs probability measures P

Ä
h,P

(1)

Y |X=x
,λ
ä

Y |X=x

and P

Ä
h,P

(2)

Y |X=x
,λ
ä

Y |X=x in Corollary 7 are particularly interesting
as their reference measures depend on x. Gibbs measures of
this form appear, for instance, in [13, Corollary 10].

Two special cases are particularly noteworthy.
a) When the reference measure Q is the Lebesgue mea-
sure: observe that the terms −

∫
D
Ä
P

(1)
Y |X=x‖Q

ä
dPX(x)

and −
∫
D
Ä
P

(2)
Y |X=x‖Q

ä
dPX(x) in (29) both become

Shannon’s differential conditional entropy, denoted by



h
Ä
P

(1)
Y |X |PX

ä
and h

Ä
P

(2)
Y |X |PX

ä
, respectively. That is, for

all i ∈ {1, 2},

h
Ä
P

(i)
Y |X |PX

ä
,
∫

h
Ä
P

(i)
Y |X=x

ä
dPX(x), (32)

where h is the entropy functional in (25).
b) When the reference measure Q is the counting
measure: the terms −

∫
D
Ä
P

(1)
Y |X=x‖Q

ä
dPX(x)

and −
∫
D
Ä
P

(2)
Y |X=x‖Q

ä
dPX(x) in (29) both become

Shannon’s discrete conditional entropies, denoted by
H
Ä
P

(1)
Y |X |PX

ä
and H

Ä
P

(2)
Y |X |PX

ä
, respectively. That is, for

all i ∈ {1, 2},

H
Ä
P

(i)
Y |X |PX

ä
,
∫

H
Ä
P

(i)
Y |X=x

ä
dPX(x), (33)

where H is the entropy functional in (27).

V. CHARACTERIZATIONS OF Ḡh
(
PY , PY |X , PX

)
IN (5)

The main result of this section is a characterization
of Ḡh

(
PY , PY |X , PX

)
in (5), which describes the variation of

the expectation of the function h when the probability measure
changes from the joint probability measure PY |XPX to the
product of its marginals PY ·PX . This result is presented here-
under and involves the mutual information I

(
PY |X ;PX

)
and

lautum information L
(
PY |X ;PX

)
, defined as follows:

I
(
PY |X ;PX

)
,
∫
D
(
PY |X=x‖PY

)
dPX(x); and (34)

L
(
PY |X ;PX

)
,
∫
D
(
PY ‖PY |X=x

)
dPX(x). (35)

Theorem 8: Consider the expected variation
Ḡh
(
PY , PY |X , PX

)
in (5) and assume that, for all x ∈ Rn:

(a) The probability measures PY and PY |X=x are both abso-
lutely continuous with respect to a given σ-finite measure
Q; and

(b) The probability measures PY and PY |X=x are mutually
absolutely continuous.

Then, it follows that

Ḡh
(
PY , PY |X , PX

)
=

1

λ

(
I
(
PY |X ;PX

)
+ L

(
PY |X ;PX

)
+

∫ ∫
log

Ñ
dPY |X=x

dP
(h,Q,λ)
Y |X=x

(y)

é
dPY (y)dPX(x)

−
∫ ∫

log

Ñ
dPY |X=x

dP
(h,Q,λ)
Y |X=x

(y)

é
dPY |X=x(y)dPX(x)

)
, (36)

where the probability measure P
(h,Q,λ)
Y |X , with λ 6= 0, is

an (h,Q, λ)-Gibbs conditional probability measure.

Proof: The proof follows from Theorem 6, which holds under
assumption (a) and leads to

Ḡh
(
PY , PY |X , PX

)
=

1

λ

∫ Å
D
Ä
PY ‖P (h,Q,λ)

Y |X=x

ä
−D

Ä
PY |X=x‖P

(h,Q,λ)
Y |X=x

ä
+D

(
PY |X=x‖Q

)
−D (PY ‖Q)

ã
dPX(x). (37)

The proof continues by noticing that∫
D
(
PY |X=x‖Q

)
dPX(x)=I

(
PY |X ;PX

)
+D (PY ‖Q) , (38)

and ∫
D
Ä
PY ‖P (h,Q,λ)

Y |X=x

ä
dPX(x) = L

(
PY |X ;PX

)
+

∫ ∫
log

Ñ
dPY |X=x

dP
(h,Q,λ)
Y |X=x

(y)

é
dPY (y)dPX(x). (39)

Finally, using (38) and (39) in (37) yields (36), which com-
pletes the proof.

An interesting observation from Theorem 8 is that the last two
terms in the right-hand side of (36) are both zero in the case
in which PY |X is an (h,Q, λ)-Gibbs conditional probability
measure. This is observation is highlighted by the following
corollary.

Corollary 9: Consider an (h,Q, λ)-Gibbs conditional probabil-
ity measure, denoted by P (h,Q,λ)

Y |X ∈ 4 (Rm|Rn), with λ 6= 0;
and a probability measure PX ∈ 4 (Rn). Let the measure
P

(h,Q,λ)
Y ∈ 4 (Rm) be such that for all sets A ∈ B (Rm),

P
(h,Q,λ)
Y (A)=

∫
P

(h,Q,λ)
Y |X=x (A) dPX(x). (40)

Then,

Ḡh
Ä
P

(h,Q,λ)
Y , P

(h,Q,λ)
Y |X , PX

ä
=

1

λ

Ä
I
Ä
P

(h,Q,λ)
Y |X ;PX

ä
+ L
Ä
P

(h,Q,λ)
Y |X ;PX

ää
. (41)

VI. CONCLUSION

Closed-form expressions for the variation of the integral of a
given measurable function due to changes in the probability
measure has been presented. In these expressions, the Gibbs
probability measure plays a central role and brings significant
flexibility as some of its parameters can be chosen up to mild
conditions. In the case of joint probability measures, the focus
has been on two particular measure changes, which unveil
connections with both mutual and lautum information. First,
one of the marginal probability measures remains the same
after the change; and second, the joint probability measure
changes to the product of its marginals.
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