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I started working in Tahiti in September 2013 and Alexey arrived in November. His
research interests being much deeper and more theoretical than my own, I believed it would
be quite challenging for us to work together. Then Dimitar visited us in January 2017.

This talk: background and prior work.

Next talk (Dimitar): our contribution.

1 Isogeny Graphs

Consider principally polarized abelian varieties of dimension one and two over a finite field.
Isogenies are morphisms of such varieties with finite kernel and cokernel.

Definition. Lez k a finite group and g > 1; define G (F ;) as the graph with:
o nodes: isomorphism classes of abelian varieties of dimension g
o edges: isogenies with kernel isomorphic to k
The first result towards understanding its structure is:
Theorem (Tate). .o and B are isogenous <= { , =5 <= y,.(F) = y,.(B).

The existence of an isogeny .&/ — 98 is thus easy to compute, but finding an explicit one
remains a difficult problem for which it is critical to understand the graph structure.

Consider absolutely simple, ordinary varieties. Knowing y, is essentially equivalent to
knowing K = Q(7r), an imaginary quadratic extension of a totally real number field K,. We
use the endomorphism ring @, as a finer invariant: it is an order of K containing 2,7
for a given Weil polynomial y, there are finitely many possibilities.

Lemma. If.o/ and 9B are adjacent nodes of Gé /0

e then [0, + Oy : O N 0Oy, ] divides €287,

Theorem (Shimura). The subgraph of varieties with endomorphism ring O is a Cayley graph for
{a:0/a~k} cC(0)

For example, if |#] = ¢ is inert in K, this subgraph is trivial.



2 Elliptic Curves

Multiple simplifications: K, = Q (unique polarization, lattice of orders is locally linear),
isogenies are products of prime-degree ones for which .o/ — 9B < 0, c Oy or vice versa.

The structure of isogeny graphs of elliptic curves was made entirely explicit (Kohel, 1996)
and became known as a volcano; see Figure 1. The computation of isogenies (Vélu, 1971)
allows exploiting it for:

o computation of endomorphism rings
o computation of modular polynomials (point counting)
e computation of class polynomials (generating curves with prescribed orders)

o reducibility of discrete logarithms (analyzing the security of cryptosystems)

3 Abelian Surfaces

Isogenies of type (Z/¢)* preserving polarizations have been computable for nearly ten years
(Lubicz—Robert, 2009). More recently, some of type (Z/¢) too.

The graph structure is not nearly as explicit as for ¢ = 1. [Draw a non-linear lattice with
orders jumping index € and £ 2 then an isogeny graph with donught rim and non-balanced trees
hanging with horizontal jumps across and within trees.] See Figure 2.

Recent results exist for the case 0 N K = Oy, where orders are easy to describe. Dimitar’s
talk will present a theoretical approach for understanding the graph structure in general; here
as an appetizer we present an approach that rely solely on the structure of horizontal isogenies.

Theorem (B,2015). Endomorphism rings can be computed in heuristic average time (g )¢ V3,

Proof. The main idea is to exploit Shimura’s complex multiplication: since the action is faithful,

if ais trivial in €(0) and ¢ (. ) # .o/ then O ¢ O .

Algorithm (very high-level overview).
InpuT:  An absolutely simple, ordinary abelian surface o/ [F,.
Ourput:  Its endomorphism ring.

Compute the order O’ = 7, 7T].
For each order O of which O’ is a maximal suborder:
Find enongh ideals a trivial in €(0).
Ifall ¢ (e ) are isomorphic to .o :
Set O’ «— O and go back to Step 2.
Return 0.

SR o~

Uses point counting, factoring discriminant, enumerating orders, selecting ideals for which
@, is efficiently computable, identifying subgroup corresponding to a, pushing to theta co-
ordinates, computing isogenies, Mestre’s method to obtain a minimal variety, showing that
knowing enough ideals trivial in €(&) are trivial in (0 ) actually implies O c 0 ,. Assumes
typical smoothness behavior for ideals, conductors, and discriminants.

(For elliptic curves, all can be proven very neatly under GRH.) 0

This allows us to explore isogeny graphs without understanding their vertical structure.
Dimitar will now present a better approach.
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Figure 1: Typical connected component of G, 3 and corresponding lattice of orders.
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Figure 2: Typical connected component of G(ZZ /3 and corresponding lattice of orders.



