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I started working in Tahiti in September 2013 and Alexey arrived in November. His
research interests being much deeper and more theoretical than my own, I believed it would
be quite challenging for us to work together. Then Dimitar visited us in January 2017.

This talk: background and prior work.
Next talk (Dimitar): our contribution.

1 Isogeny Graphs
Consider principally polarized abelian varieties of dimension one and two over a finite field.
Isogenies are morphisms of such varieties with finite kernel and cokernel.

Definition. Let k a finite group and g ≥ 1; defineG g
k (�q ) as the graph with:

• nodes: isomorphism classes of abelian varieties of dimension g

• edges: isogenies with kernel isomorphic to k

The first result towards understanding its structure is:

Theorem (Tate). � and� are isogenous⇐⇒ ζ� = ζ� ⇐⇒ χπ(� ) = χπ(� ).
The existence of an isogeny� →� is thus easy to compute, but finding an explicit one

remains a difficult problem for which it is critical to understand the graph structure.
Consider absolutely simple, ordinary varieties. Knowing χπ is essentially equivalent to

knowingK =�(π), an imaginary quadratic extension of a totally real number fieldK0. We
use the endomorphism ring �� as a finer invariant: it is an order ofK containing �[π,π];
for a givenWeil polynomial χπ there are finitely many possibilities.

Lemma. If� and� are adjacent nodes ofG g
(�/ℓ ) g then [�� +�� : �� ∩�� ] divides ℓ2 g−1.

Theorem (Shimura). The subgraph of varieties with endomorphism ring � is a Cayley graph for
{a : � /a � k} ⊂ C(� ).

For example, if |k | = ℓ is inert inK , this subgraph is trivial.
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2 Elliptic Curves
Multiple simplifications: K0 = � (unique polarization, lattice of orders is locally linear),
isogenies are products of prime-degree ones for which� →�⇔�A ⊂ �B or vice versa.

The structure of isogeny graphs of elliptic curves was made entirely explicit (Kohel, 1996)
and became known as a volcano; see Figure 1. The computation of isogenies (Vélu, 1971)
allows exploiting it for:

• computation of endomorphism rings

• computation of modular polynomials (point counting)

• computation of class polynomials (generating curves with prescribed orders)

• reducibility of discrete logarithms (analyzing the security of cryptosystems)

3 Abelian Surfaces
Isogenies of type (�/ℓ )2 preserving polarizations have been computable for nearly ten years
(Lubicz–Robert, 2009). More recently, some of type (�/ℓ ) too.

The graph structure is not nearly as explicit as for g = 1. [Draw a non-linear lattice with
orders jumping index ℓ and ℓ2, then an isogeny graph with donught rim and non-balanced trees
hanging with horizontal jumps across and within trees.] See Figure 2.

Recent results exist for the case � ∩K0 = �K0
where orders are easy to describe. Dimitar’s

talk will present a theoretical approach for understanding the graph structure in general; here
as an appetizer we present an approach that rely solely on the structure of horizontal isogenies.

Theorem (B, 2015). Endomorphism rings canbe computed inheuristic average timeL(q ) g 2
�
3/2+o(1).

Proof. Themain idea is to exploit Shimura’s complexmultiplication: since the action is faithful,
if a is trivial in C(� ) and ϕa(� ) �� � then � � �� .

Algorithm (very high-level overview).
Input: An absolutely simple, ordinary abelian surface� /�q .

Output: Its endomorphism ring.
1. Compute the order � � = �[π,π].
2. For each order � of which � � is a maximal suborder:
3. Find enough ideals a trivial in C(� ).
4. If all ϕa(� ) are isomorphic to� :
5. Set � � ← � and go back to Step 2.
6. Return � �.

Uses point counting, factoring discriminant, enumerating orders, selecting ideals for which
ϕa is efficiently computable, identifying subgroup corresponding to a, pushing to theta co-
ordinates, computing isogenies, Mestre’s method to obtain a minimal variety, showing that
knowing enough ideals trivial in C(� ) are trivial in C(�� ) actually implies � ⊂ �� . Assumes
typical smoothness behavior for ideals, conductors, and discriminants.

(For elliptic curves, all can be proven very neatly under GRH.)

This allows us to explore isogeny graphs without understanding their vertical structure.
Dimitar will now present a better approach.

Спасибо за внимание!
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Figure 1: Typical connected component ofG 1
�/3 and corresponding lattice of orders.

Figure 2: Typical connected component ofG 2
(�/3)2 and corresponding lattice of orders.
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