
Approximation of Cantor Rational Cardinalities by Primitive
Words

Tara Trauthwein

June 13, 2020

Supervisor: Prof. Alexander D. Rahm
University of Luxembourg

1 Introduction
This project is about numerical computations related to the Cantor ternary set (in the following
just called the Cantor set). This set is created by iteratively deleting the open middle third from
a set of line segments. One starts by deleting the open middle third (1

3 ,
2
3) from the interval

[0, 1], leaving two line segments: [0, 1
3]∪ [2

3 , 1]. We can express these iterations by the following
relations: C0 := [0, 1]

Cn :=
(

1
3 · Cn−1

)
∪
(

2
3 + 1

3 · Cn−1
)
, n > 1,

where for a set A ⊂ R and λ, µ ∈ R the set λ ·A+ µ is defined as:

λ ·A+ µ := {λ · a+ µ | a ∈ A} .

The Cantor set C contains all the points in the interval [0, 1] that are not deleted in this process:

C :=
∞⋂

n=1
Cn.

The Cantor rationals, C ∩Q, are the rational points in the Cantor set. If we look only at those
which have their denominator in a certain interval that we fix, then we are considering a finite
set, and we can wonder how large that set is. To be precise, we represent each Cantor rational
as a fraction p

q such that p, q ∈ Z are co-prime. Then we define the set of Cantor rationals of
denominator q as

Nq :=
{
p

q
∈ C

∣∣∣∣ p, q ∈ N>0, p is co-prime to q
}
.

We then sum up over the cardinalities #Nq of the sets Nq :

N(T) :=
∑

(1−c)T6q6T

#Nq,

for some 0 < c < 1. For small T ∈ N, one can compute N(T) directly, but how does it behave
asymptotically?

The article [4] by Rahm, Solomon, Trauthwein and Weiss aims to give an asymptotic approxi-
mation formula based on a heuristic argument, as well as numerical evidence.

1

In this project we establish a way to compute said approximations. In section 2, we recall
fundamental results from combinatorics of words and in section 3, we remind the reader of
the Möbius and Euler totient function. Section 4 states and proves some useful facts about
purely periodic rationals and their ternary expansion. In section 5 we detail ways to calculate
the number of primitive even and odd words and in section 6, the approximation formulas are
given. Some results of the ensuing computations are shortly presented in section 7 and the code
used to carry them out is listed in section 8.

2 Recall from combinatorics of words
We recall some results and their proofs from [3].

Definition 2.1. An alphabet A is a non-empty finite set of symbols, called letters (in our
case, A = {0, 1} or A = {0, 1, 2}).
A word is a finite sequence of symbols from A, for example u = 00121. The empty word 1 is
the sequence of no symbols at all.
We denote by A∗ the set of all words over the alphabet A.
Taking the product of words is the operation defined as

a1 . . . an · b1 . . . bm = a1 . . . anb1 . . . bm

for any two words a1 . . . an and b1 . . . bm in A∗.
The length of a word w, denoted by |w|, is the total number of letters in w, for example
|u| = |00121| = 5.
A word u is a factor of another word w (resp. prefix or suffix) if there exist words x and y
such that

w = xuy (resp. w = uy or w = xu).
All these are called proper if they are different from w.
We denote by prefk(w) the prefix of length k of w (or w if |w| < k).
Similar notations are used for the suffixes, which we denote by sufk(w).

For the following, we fix an alphabet A.

Define the cyclic permutation function c : A∗ → A∗ by:{
c(1) = 1

c(w) = pref−1
1 (w)w pref1(w), for w ∈ A \ {1},

Definition 2.2. • Two words x and y are called conjugates, denoted x ∼ y, if they can
be obtained from each other by a sequence of cyclic permutations c as defined above, i.e.
there exist k, l ∈ N s.t. x = ck(y) and y = cl(x). It is easy to see that this is an equivalence
relation.

• Let w = a1 . . . an with ai ∈ A for all i = 0, 1, ..., n. The number p is called a period of w
if

ai = ai+p for i = 1, ..., n− p.
We call the smallest period of w the period of w and denote it as p(w). The elements
in the conjugacy class of prefp(w)(w) are called cyclic roots of w.

• We say that a word w 6= 1 is primitive if it is not a proper integer power of any of its
cyclic roots, i.e. if for any cyclic root u, we cannot write

w = un = uu...u︸ ︷︷ ︸
n times

for some n ∈ N \ {0, 1}.

2

Example 2.3. Some examples of conjugates, periods and primitive words:
Take w = 00121. Its conjugates are given by: 00121, 10012, 21001, 12100 and 01210. We
obtained these by applying a cyclic permutation each time. The only periods of this word are
the numbers n > 5 = |w|, since for those the condition to be satisfied is an empty condition.
Hence p(w) = 5 and the cyclic roots are given by the conjugates of w. Thus w is not a proper
integer power of any of its cyclic roots and we conclude that w is primitive.
Note that the word w = 01010 is also primitive, but its period is p(w) = 2. Its cyclic roots are
given by 01 and 10 and its conjugates are 01010, 00101, 10010, 01001 and 10100.
The word w = 020202 is not primitive since it can be written w = (02)3. Its conjugates are
given by 020202 and 202020.

Proposition 2.4 ([3], Theorem 2, p.6). Let u, v, x, y ∈ A∗ s.t. uv = xy. Then there exists a
unique word t ∈ A∗ s.t. one of the two following statements is true:

(i) u = xt and y = tv

(ii) x = ut and v = ty.

Proof. For symmetry reasons, we can assume without loss of generality that |u| > |x|. Then
since uv and xy represent the same word in A∗, x must be a prefix of u, which implies that
there is a unique word t ∈ A∗ (possibly empty), such that u = xt. Now we can write

xy = uv = xtv

and again since those words are the same, we must have y = tv. Hence we get (i). Similarly, in
assuming |x| > |u|, we get statement (ii). �

Proposition 2.5 ([3], Theorem 3, p.6). Let u, v ∈ A∗. The following assertions are equivalent:

(i) u and v commute, i.e. uv = vu.

(ii) u and v satisfy a non-trivial relation, i.e. ∃α, β ∈ {u, v}∗, the alphabet consisting of the
letters u and v, such that α 6= β seen as words with letters u and v, but α = β seen as
words with letters in A.

(iii) There exists a word t ∈ A∗ such that u = tn and v = tm, where n,m ∈ N.

Example 2.6. A non-trivial relation between words u and v is for example given by u2 = v, but
not by uv = uv.

Proof. (iii) ⇒ (i): This is clear since uv = tn+m = tm+n = vu.
(i) ⇒ (ii): The relation uv = vu is non-trivial.
(ii)⇒ (iii): The result is clear if u or v is empty. Indeed, then the non-trivial relation simplifies
in the first case to an expression of the form vk = vl, k, l ∈ N. If k = l, we can just take
t = v, n = 0, m = 1 and if k 6= l, then v must be empty, hence we take t to be the empty word.
Assume thus that u and v are non-empty and assume also without loss of generality that
|u| > |v|. We use strong induction on |u| + |v|. In the case |u| = |v| = 1, it is clear since a
non-trivial relation between letters u and v in A implies that u = v, since we can compare the
words α and β letter by letter in A. Suppose that |u|+ |v| = k+ 1 > 3 and that the implication
is true for any u′, v′ satisfying |u′|+ |v′| 6 k.
Assume thus that α = β in a non-trivial way. Up to removing some common prefixes consisting
of u’s and v’s, we can assume without loss of generality that α = uα1 and β = vβ1, where
α1, β1 ∈ {u, v}∗. By Proposition 2.4, there exists a word w ∈ A∗ such that u = vw. Denote by
α′, β′, α′1, α

′
2 the words we obtain by replacing every u with vw in α, β, α1, α2 respectively. We

have now
α′ = β′ ⇔ vwα′1 = vβ′1 ⇔ wα′1 = β′1.

3

The last equality describes a relation between v and w which is non-trivial since β′1 must start
with a v and wα′1 starts with a w. We also have |v| + |w| = |u| < |u| + |v| = k + 1 since v is
non-empty, and hence by the induction hypothesis, there exists a word t such that v = tn and
w = tm and hence u = vw = tn+m. �

The following proposition gives a very useful characterization of primitive words.

Proposition 2.7 ([3], Theorem 1, p.4). A word w ∈ A \ {1} is primitive if and only if it
satisfies:

∀ z ∈ A∗ : [w = zn ⇒ n = 1, w = z].

Proof. If a non-empty word w satisfies the property, then it is primitive since it cannot be a
proper integer power of any cyclic root.
Assume that w is primitive and w = zn with n > 2. Let r = prefp(w)(w). Since w is primitive,
we get that |r| - |w|, but by the hypothesis, |z| | |w|. In particular, |r| - |z|. Since w is an
integer power of z, the length |z| is a period of w and thus by the two arguments combined,
|z| > p(w) = |r|. We are in the following situation:

w = rr...r︸ ︷︷ ︸
m times

x = zz...z︸ ︷︷ ︸
n times

,

where x is a prefix of r and m > n. Considering the first z, it can be seen that r = pref |r|(z).
On the other hand, considering the second z and using that |r| - |z|, we see that pref |r|(z) = st,
where s is a suffix of r and t = pref |r|−|s|(r), with s, t 6= 1. Thus we have r = st = ts and
by Proposition 2.5, this implies that r is a proper integer power of a non-empty word u. This
contradicts the fact that |r| is the period of w. �

Another very important property of primitive words says the following:

Proposition 2.8 ([3], Corollary 2, p.7). Let w ∈ A∗ \ {1}. There exists a unique primitive
word ρ and a unique n > 1 such that w = ρn.

Proof. The existence of at least one such ρ is clear by Proposition 2.7. Indeed, if w is primitive,
there is nothing to show. If w is not primitive, by the negation of the second condition in
Proposition 2.7, there exists a word z 6= w such that w = zn, n > 2. If z is primitive, we are
done. If not, decompose z in the same way. We continue in this fashion and will eventually find
a ρ since words consisting of one letter are always primitive.
For the uniqueness, assume ρ1, ρ2 are primitive with w = ρn

1 and w = ρm
2 , n,m > 1. Then

ρn
1 = ρm

2 which is a non-trivial relation between ρ1 and ρ2. By Proposition 2.5, there exits a
word t such that both ρ1 and ρ2 are powers of t. Since both are primitive, by Proposition 2.7
we must have ρ1 = t = ρ2 and thus also n = m. �

Definition 2.9. Let w be a non-empty word. The unique primitive word ρ(w) such that
w = ρ(w)n for some n > 1 is called the primitive root of w. The unique number n is called
the exponent of w.

3 Möbius and Euler totient function
Definition 3.1. Define the Möbius function µ : N>0 → {−1, 0, 1} by:

µ(n) :=
{

(−1)k, if n is the product of k distinct prime numbers
0, if there exists a prime number p such that p2 | n.

We also recall the following widely-known result and recall a short proof for the implication.

4

Proposition 3.2 (Möbius Inverse Formula). Let α, β : N>0 → Z be functions. Then

α(n) =
∑
d|n

β(d), ∀n > 1

implies
β(n) =

∑
d|n

µ

(
n

d

)
α(d), ∀n > 1.

The proof is a recall from [5], Theorem 2 (Note), p.4.

Proof. Let n > 1. Then: ∑
d|n

µ

(
n

d

)
α(d) =

∑
d|n

µ

(
n

d

)∑
k|d

β(k)

=
∑
k|n

β(k)
∑
k|d
d|n

µ

(
n

d

)

=
∑
k|n

β(k)
∑
k|ne
e|n

µ (e)

=
∑
k|n

β(k)
∑
e|n

k

µ (e)

= β(n)

using the fact that k | n
e , e | n⇔ k | n, e | n

k and the well-known result

∑
d|n

µ(d) =
{

0 if n 6= 1
1 if n = 1.

�

Definition 3.3. Define the Euler totient function Φ : N>0 → N by:

Φ(n) := #{m ∈ N>0 |m 6 n, gcd(m,n) = 1}.

4 The ternary expansion and purely periodic rationals
Denote by O(3, q) the multiplicative order of 3 in Z/qZ, i.e. the smallest ` such that 3` ≡
1 mod q, for any q ∈ N>0.
Then recall the following well-known fact about the ternary number system.
For any x ∈ R+, there exists a unique n ∈ N and a unique sequence (ai)i∈N ∈ {0, 1, 2}N s.t.:

x =
n∑

i=−∞
an−i · 3i.

We make the choice of representing the series as a finite sum whenever it is possible, in order
to obtain uniqueness. (Note that for purposes of distinguishing Cantor rationals, the opposite
choice of representing the series with an infinite sequence of digits "2" is usually made. But we
do not need to distinguish Cantor rationals in the proof of Lemma 4.1, which works for ternary
expansions in general.)
The coefficients above are of course determined by x, but we suppress this from the notation.
The sequence a0a1a2 . . . an.an+1an+2 . . . is called the ternary expansion of x (if n = 0 and
a0 = 0, we say that a1a2 . . . is the ternary expansion of x).

5

If x ∈ Q+, this sequence becomes periodic after an initial finite sequence of coefficients, since
when doing an integer division in any number system, there are only a finite number of possible
rests.

Next, we need some definitions and facts for this specific situation. We call a rational p
q ∈

Q ∩ (0, 1) purely periodic if its ternary expansion is periodic from the start. As p
q ∈ (0, 1),

one can always write uniquely (up to the above convention):

p

q
=
∞∑

i=1
ai · 3−i

with ai ∈ {0, 1, 2}N for all i = 1, 2, Hence if p
q is purely periodic, it is periodic starting from

a1.

Lemma 4.1. Let p
q ∈ Q ∩ (0, 1) with gcd(p, q) = 1.

(i) The rational p
q is purely periodic if and only if 3 - q.

(ii) If p
q is purely periodic, the period length ` of p

q depends only on q and is given by O(3, q).
Moreover, ` | Φ(q), where Φ is the Euler totient function.

Proof. (i) The rational p
q can be written uniquely as:

p

q
= 1

3b1 + . . .+ 1
3n
bn + 1

3n+1a1 + . . .+ 1
3n+`

a` + 1
3n+`+1a1 + . . . (1)

where the ternary expansion of p
q is given by

b1 . . . bna1 . . . a`,

i.e. b1 . . . bn is the non-periodic part and a1 . . . a` is the repeating sequence. We can assume
here that n is minimal. If n = 0, then p

q is purely periodic.
Rewrite (1) in a different form:

p

q
− 1

3b1 − . . .−
1
3n
bn = 1

3n+1a1 + . . .+ 1
3n+`

a` + 1
3n+`+1a1 + . . .

⇔3n p

q
−

n∑
k=1

3n−kbk = 1
3a1 + . . .+ 1

3`
a` + 1

3`+1a1 + . . . (2)

Define
Q := 3n p

q
−

n∑
k=1

3n−kbk. (3)

Then by (2):

Q =1
3a1 + . . .+ 1

3`
a` + 1

3`+1a1 + . . .

⇒3`Q =3`−1a1 + . . .+ 30a` + 1
3a1 + . . .+ 1

3`
a` + 1

3`+1a1 + . . .

⇒3`Q =3`−1a1 + . . .+ 30a` +Q

⇒
(
3` − 1

)
Q =3`−1a1 + . . .+ 30a`.

Replacing Q again by the expression in (3) and multiplying by q, we get:(
3np− q

n∑
k=1

3n−kbk

)(
3` − 1

)
= q

(
3`−1a1 + . . .+ 30a`

)

⇔3np
(
3` − 1

)
= q

(∑̀
i=1

3`−iai +
(
3` − 1

) n∑
k=1

3n−kbk

)
(4)

6

Assume 3 | q. Then 3 must divide the left hand side of (4). As 3 - (3` − 1) (since ` > 0) and
3 - p (since gcd(p, q) = 1), we must have 3 | 3n, which implies n > 1 and p

q is not purely periodic.

Assume 3 - q. If n > 1, we have that 3 divides the left hand side of (4). As 3 - q, we must have
that 3 divides

∑̀
i=1

3`−iai + (3` − 1)
n∑

k=1
3n−kbk

=
n∑

k=1
3n+`−kbk +

∑̀
i=1

3`−iai −
n∑

m=1
3n−mbm.

This expression can only be divisible by 3 if a` − bn = 0, since all other terms are already
divisible by 3 and ai, bj ∈ {0, 1, 2}. But if a` = bn, the ternary expansion can be written:

b1 . . . bn−1a`a1 . . . a`−1a`a1 . . .

and thus it is periodic starting from the nth coefficient with periodic part a`a1 . . . a`−1. This
contradicts the assumption that n is minimal. Thus if 3 - q, then n = 0.
(ii) Assume p

q to be purely periodic. Equation (4) with n = 0 gives:

p(3` − 1) = q

(∑̀
k=1

3l−kak

)
.

Since gcd(p, q) = 1, we must have q | (3` − 1).
Let m = O(3, q). Then q | 3m − 1 and by basic group theory, m | `. Moreover, since p

q < 1, we
have:

p · 3m − 1
q

< 3m − 1 < 3m

and thus ∃ c1, . . . , cm ∈ {0, 1, 2} s.t.

p · 3m − 1
q

= 3m−1c1 + . . .+ 30cm (5)

Recall that
p

q
= 1

3a1 + . . .+ 1
3`
a` + 1

3`+1a1 + . . .

and calculate:

(3m − 1)p
q

= 3m−1a1 + 3m−2a2 + . . .+ 30am + 1
3am+1 + . . .+ 1

3`−m
a` −

p

q
+ 3m−` p

q︸ ︷︷ ︸
<3m−`

.

Comparing this with (5) and by uniqueness of the ternary expansion, we get:

a1 = c1, . . . , am = cm

and am+k = ak ∀ k = 1, . . . `−m.

This implies (keeping in mind that m | `) that the ternary expansion of p
q is m-periodic and

equal to
c1 . . . cm.

As we assumed that ` is the period, i.e. the smallest number such that ai = ai+` for all i ∈ N>0,
we must have ` = m.
As ` = O(3, q) and #(Z/qZ) = Φ(q), by basic group theory we must have ` | Φ(q). �

7

5 Computing the number of primitive words
From what we established above, we now know that a purely periodic Cantor rational can be
written uniquely in ternary expansion and that the expansion is periodic from the beginning.
The periodic part a1 . . . a` can be seen as a primitive word over the alphabet {0, 1, 2}. Indeed,
it is easy to see that a1 . . . a` = (b1 . . . bm)n implies n = 1 and a1 . . . a` = b1 . . . bm, thus, using
the characterization in Proposition 2.7, a1 . . . a` is primitive. This motivates a closer look at
primitive words, in particular at how to calculate their number effectively.

Definition 5.1. Let A be an alphabet of size a = #A and let ` ∈ N.
Then the function m is defined by

m(`, a) := #{w ∈ A∗ | w is primitive and |w| = `}.

Assume A = A1 tA2, where the letters in A1 are said to be even and the letters in A2 are said
to be odd. A word w ∈ A∗ is said to be even if w contains an even number of letters from A2
and odd if it contains an odd number of letters from A2. Assume for the sake of simplicity that
#A1 =

⌈
#A

2

⌉
and #A2 =

⌊
#A

2

⌋
.

Then, we define

e(`, a) := #{w ∈ A∗ | w is primitive, even and |w| = `}

and
o(`, a) := #{w ∈ A∗ | w is primitive, odd and |w| = `}.

Remark 5.2. The assumption #A1 =
⌈

#A
2

⌉
is the natural way of defining the number of even

and odd letters, since in general we consider A = {0, 1, 2, ..., n} for some n ∈ N>0.

5.1 Computing the Number of Primitive Words

The following proposition is again a recall from [3]. We adapted it very slightly to better suit
our needs.

Proposition 5.3 ([3], Lemma 3, p.14). For an alphabet A with #A = a, for all ` ∈ N>0, we
have:

a` =
∑
d|`

m(d, a).

Proof. By Proposition 2.8, there is a 1-to-1 correspondence between a word x ∈ A∗ and the pair
(ρ, e), where ρ and e are the primitive root and exponent of x respectively. Hence the number
of all words of length ` can be written on the one hand as a` and on the other hand by the
number of all such pairs. The only condition on the exponent is that it divides ` and for each
exponent, the number of possible primitive ρ is exactly given by m(`

e , a). Hence we have:

a` =
∑
e|`
m

(
`

e
, a

)
=
∑
d|`
m(d, a)

which was the claim. �

Proposition 5.4 ([3], Theorem 7, p.16). For an alphabet A with #A = a, for all ` ∈ N>0, we
have:

m(`, a) =
∑
d|`
µ

(
`

d

)
ad.

Proof. Apply the Möbius Inverse Formula (see Proposition 3.2) to the expression in Proposi-
tion 5.3. �

8

This formula gives a much better way to calculate the number of primitive words over a given
length and a given alphabet. Instead of computing them all and counting, we just need to
compute the divisors of ` and sum over them.

5.2 Computing the Number of Primitive Even Words

In the following we are going to elaborate two different but equivalent formulas for the number
of primitive even words. This subsection is not directly based on [3] but is inspired from its
proof strategies.

5.2.1 The First Formula

For the first one, denote by valp(n) for a prime p and n ∈ N>0 the p-valuation of n, i.e.

valp(n) = max{k ∈ N : pk | n}.

Then we have:

Proposition 5.5. Let ` ∈ N>0 and let A be an alphabet with a = #A and the number of even
elements in A be given by

⌈
a
2
⌉
. Then

e(`, a) =
∑
d|`
µ

(
`

d

)ad + (val2(d) + 1) 1− (−1)a

4 − 1
2

val2(d)∑
k=0

ad/2k

.
This will be an immediate consequence of the following proposition:

Proposition 5.6. Let ` ∈ N>0 and let A be an alphabet with a = #A and the number of even
elements in A is given by

⌈
a
2
⌉
. Then

∑
d|`

e(`, a) = a` + (val2(`) + 1) 1− (−1)a

4 − 1
2

val2(`)∑
k=0

a`/2k
. (6)

To show this, we first need a lemma.

Lemma 5.7. Under the assumptions of Proposition 5.6, we have:⌈
a`

2

⌉
= a`

2 + 1− (−1)a

4 =
∑
d|`

`/d even

m(d, a) +
∑
d|`

`/d odd

e(d, a). (7)

This expression gives exactly the number of all even words of length `.

Proof. Step 1. We are going to show that the left hand side of equation (7) is exactly the
number of all even words of length `. We prove this by induction. The formula is true for ` = 1,
since then the number of even words of length 1 is given by the number of even letters, which is⌈

a

2

⌉
= a

2 + 1− (−1)a

4 .

Assume it is true for words of length n. Then the number of even words of length n+ 1 is given
by:

#{even words of length n} ·#{even letters}+ #{odd words of length n} ·#{odd letters}.

9

In formulas:(
an

2 + 1− (−1)a

4

)
·
(
a

2 + 1− (−1)a

4

)
+
(
an − an

2 −
1− (−1)a

4

)
·
(
a

2 −
1− (−1)a

4

)
=an

(
a

2 −
1− (−1)a

4

)
+
(
an

2 + 1− (−1)a

4

)
·
(
a

2 + 1− (−1)a

4 − a

2 + 1− (−1)a

4

)
=an+1

2 + (1− (−1)a)2

8

=an+1

2 + 1− (−1)a

4

which proves the claim of Step 1.

Step 2. For the right hand side of equation (7), we consider Proposition 2.8, which states that
there is a 1-to-1 correspondence between words x ∈ A∗ and pairs (ρ, e), where ρ is primitive.
Every even word must satisfy one of the following conditions:

• its primitive root ρ is even;

• its exponent e is even.

We can thus write the number of all even words of length ` as the following sum:∑
d|`

`/d even

m(d, a) +
∑
d|`

`/d odd

e(d, a).

This proves equation (7). �

Proof of Proposition 5.6. Step 1. Assume ` is odd. Then by Lemma 5.7 we have:

a`

2 + 1− (−1)a

4 =
∑
d|`

`/d even

m(d, a) +
∑
d|`

`/d odd

e(d, a) =
∑
d|`

e(d, a)

since `
d is always odd as ` is odd. This is exactly equation (6), since val2(`) = 0.

Step 2. To prove the statement of the proposition for general `, we use induction on val2(`).
Base Case: val2(`) = 0, i.e. ` is odd. This case was dealt with in Step 1.
Induction step: Assume that equation (6) is true for all ` = n ∈ N where val2(n) = p, for
some p > 0. Assume that val2(`) = p + 1. This implies that ` is even, i.e. ` = 2 · `′, for some
`′ ∈ N.
By Lemma 5.7 we have for ` = 2`′:

a`

2 + 1− (−1)a

4 = a2`′

2 + 1− (−1)a

4
=

∑
d|2`′

2`′/d even

m(d, a) +
∑
d|2`′

2`′/d odd

e(d, a)

=
∑
d|`′

m(d, a) +
∑
d|2`′

e(d, a)−
∑
d|`′

e(d, a)

= a`′ +
∑
d|2`′

e(d, a)−
∑
d|`′

e(d, a)

where we use Proposition 5.3 and the fact that (d | 2`′ and 2`′

d even)⇔ d | `′.

10

Now by the definition of `′, we have val2(`′) = p and we can apply the induction hypothesis:

∑
d|`′

e(d, a) = a`′ +
(
val2(`′) + 1

) 1− (−1)a

4 − 1
2

val2(`′)∑
k=0

a`′/2k
.

Thus we can calculate:∑
d|`

e(d, a) =
∑
d|2`′

e(d, a)

= a2`′

2 + 1− (−1)a

4 − a`′ + a`′ +
(
val2(`′) + 1

) 1− (−1)a

4 − 1
2

val2(`′)∑
k=0

a`′/2k

= a2`′ +
(
val2(2`′) + 1

) 1− (−1)a

4 − 1
2a

2`′ − 1
2

val2(2`′)∑
k=1

a2`′/2k

= a2`′ +
(
val2(2`′) + 1

) 1− (−1)a

4 − 1
2

val2(2`′)∑
k=0

a2`′/2k

= a` + (val2(`) + 1) 1− (−1)a

4 − 1
2

val2(`)∑
k=0

a`/2k
.

Thus we have shown that the equation (6) is true for all ` ∈ N with val2(`) = p + 1. By
induction, this concludes the proof of the proposition. �

proof of Prop. 5.5. Apply the Möbius Inverse Formula (see Proposition 3.2) to the relation in
Proposition 5.6. �

5.2.2 The Second Formula

Here the author would like to thank Noam Solomon for the idea of this formula. It goes as
follows:

Proposition 5.8. Let ` ∈ N>0 and let A be an alphabet with a = #A and the number of even
elements in A be given by

⌈
a
2
⌉
. Then

e(`, a) =
∑
d|`

`/d even

µ

(
`

d

)
ad +

∑
d|`

`/d odd

µ

(
`

d

)(
ad

2 + 1− (−1)a

4

)

=
∑
d|`

`/d even

µ

(
`

d

)
ad +

∑
d|`

`/d odd

µ

(
`

d

)⌈
ad

2

⌉
.

Recall that o(`, a) denotes the number of odd primitive words of length ` over an alphabet A
with a = #A. In particular, we have

m(`, a) = e(`, a) + o(`, a).

Lemma 5.9. Let ` ∈ N>0 and let A be an alphabet with a = #A and the number of even
elements in A is given by

⌈
a
2
⌉
. Then⌊
a`

2

⌋
= a`

2 −
1− (−1)a

4 =
∑
d|`

`/d odd

o(d, a). (8)

11

Proof. We are going to prove this by using a double counting argument and showing that both
sides of the equation give the number of odd words of length `.
Step 1. By Lemma 5.7, the number of all even words of length ` is given by:

a`

2 + 1− (−1)a

4 ,

therefore the number of all odd words of length ` is:

a` −
(
a`

2 + 1− (−1)a

4

)
= a`

2 −
1− (−1)a

4 .

Step 2. We use again Proposition 2.8, which states that there is a 1-to-1 correspondence
between words x ∈ A∗ and pairs (ρ, e), where ρ is primitive. A word is odd if and only if the
following two statements are true:

• its primitive root ρ is odd;

• its exponent e is odd.

We can thus write the number of all odd words of length ` as the following sum:∑
d|`

`/d odd

o(d, a),

which proves the Lemma. �

To prove Proposition 5.8, we need a modified version of the Möbius Inverse Formula.

Proposition 5.10. Let α, β : N>0 → Z be functions. Then

α(n) =
∑
d|n

n/d odd

β(d), ∀n > 1

implies
β(n) =

∑
d|n

n/d odd

µ

(
n

d

)
α(d), ∀n > 1.

Proof. Let n > 1. Then:

∑
d|n

n/d odd

µ

(
n

d

)
α(d) =

∑
d|n

n/d odd

∑
k|d

d/k odd

µ

(
n

d

)
β(k)

=
∑
k|n

n/k odd

β(k)
∑
k|d
d|n

µ

(
n

d

)

=
∑
k|n

n/k odd

β(k)
∑
e|n

k

µ (e)

= β(n)

using the facts that

d | n, k | d, n
d

odd, d
k
odd⇔ k | n, k | d, d | n, n

k
odd

12

and
k | n

e
, e | n⇔ k | n, e | n

k

as well as the well-known result

∑
d|n

µ(d) =
{

0 if n 6= 1
1 if n = 1.

�

proof of Proposition 5.8. Apply the modified Möbius Inverse Formula (Proposition 5.10) to the
equation (8) in Lemma 5.9 to get:

o(`, a) =
∑
d|`
`/d

µ

(
`

d

)(
ad

2 −
1− (−1)a

4

)
.

Using that every primitive word is either odd or even, we get:

e(`, a) = m(`, a)− o(`, a)

=
∑
d|`
µ

(
`

d

)
ad −

∑
d|`

`/d odd

µ

(
`

d

)(
ad

2 −
1− (−1)a

4

)

=
∑
d|`

`/d even

µ

(
`

d

)
ad +

∑
d|`

`/d odd

µ

(
`

d

)(
ad

2 + 1− (−1)a

4

)
.

�

6 Approximation formulas
For q ∈ N>0, denote by ` the period length in ternary expansion of a purely periodic rational
in (0, 1) with denominator q (or equivalently, ` = O(3, q)) and define:

MLO(q) := round
(Φ(q) m(`, 2)

e(`, 3)

)
FP(q) := round

((2
3

)`(q)
· 2 · Φ(q)

)
,

where Φ is the Euler totient function.
These are the functions that we will compare to the number of Cantor rationals with denomina-
tor q, denoted by #Nq, for q ranging from 1 to 310. We do comparisons only for those q which
are not multiples of 3, i.e. we only look at purely periodic Cantor rationals. For a heuristic
justification for the choice of these functions, see paper [4].
Remark 6.1. If q is such that its period length ` is prime and at least 3, then MLO(q) takes a
special form. Indeed, in this case the divisors of ` are just 1 and `, which implies that µ(`) = −1.
Moreover, ` is odd. We get:

m(`, a) =
∑
d|`
µ

(
`

d

)
ad

= a` − a

13

and

e(`, a) =
∑
d|`

`/d even

µ

(
`

d

)
ad +

∑
d|`

`/d odd

µ

(
`

d

)(
ad

2 + 1− (−1)a

4

)

= a`

2 + 1− (−1)a

4 − a

2 −
1− (−1)a

4

= a` − a
2 .

We thus deduce that MLO(q) takes the form:

MLO(q) = round
(

2 · Φ(q) · 2` − 2
3` − 3

)
.

This implies that for ` prime and big enough, we get MLO(q) = FP(q) due to rounding.

For general q, we have that

MLO(q)
FP(q) = m(`, 2)/ e(`, 3)

2 · (2/3)`

`→∞−→ 1.

Indeed, by the computations done in Section 5, we get the following:

m(`, 2)
e(`, 3) ·

(3
2

)`

=
∑

d|` µ
(

`
d

)
2d∑

d|` µ
(

`
d

)
3d −

∑
d|`

`/d odd
µ
(

`
d

)
3d−1

2

·
(3

2

)`

∼ 2`

3` − 3`

2
·
(3

2

)`
`→∞−→ 2.

7 Results
In the following are some results of numerical computations to compare the values of the functi-
ons MLO and FP with the actual number of Cantor rationals with denominator q, where 3 - q.

Define for c ∈ (0, 1) and for T ∈ R>0:

IT := [(1− c)T, T]
N(T) :=

∑
q∈IT
3-q

#Nq

F (T) :=
∑
q∈IT
3-q

FP(q)

M(T) :=
∑
q∈IT
3-q

MLO(q).

Remark 7.1. Note that the function M(T) used here is different fromM(T) used in [4]. Indeed,
in paper [4] one restricts the sum further to those q such that q is a divisor of 1

2

(
3`(q) − 1

)
,

where `(q) denotes the period length of q. This makes M(T) significantly smaller.
We did the computation for c = 1

2 and c = 2
3 , summing over the intervals [1

2 · T, T] for
T ∈ {57 · 2k : 1 6 k 6 10} and [1

3 · T, T] for T ∈ {3k : 1 6 k 6 10} respectively. In this
way, the intervals are overlapping only at the points T . See table 1 as well as figures 1 and 2
for results with c = 1

2 and table 2 as well as figures 3 and 4 for results with c = 2
3 .

From these computations, we can draw the following preliminary conclusions:

14

• The functions MLO and FP seem to give a decent approximation of the number of purely
periodic Cantor rationals. Indeed, the ratios between the projected value and the actual
value decrease to numbers between 0.8 and 1.5.

• We get better results when c = 1
2 as when c = 2

3 . This comes from the fact that both
approximation functions may sometimes switch the correct values, i.e. MLO(q1) is so-
metimes a good approximation of Nq2 and MLO(q2) of Nq1 . If both q1 and q2 lie in the
same interval, this mistake does not matter since we consider the sum over the interval.
In the case c = 2

3 this seems to happen for q1 = 3n − 1 and q2 = 3n + 1. Here q1 and q2
are not in the same interval, hence the discrepancies.

• The functions MLO and FP give very similar results. This is natural, considering that

m(`, 2)/ e(`, 3)
2 · (2/3)`

`→∞−→ 1,

as explained in Section 6, and hence

M(T)
N(T)

T→∞−→ 1.

However, M(T) seems to give slightly better results.

Table 1: Values for c = 1
2

T N(T) F (T) M(T) F (T)/N(T) M(T)/N(T)
57 8 20 20 2.5 2.5
114 28 43 41 1.536 1.464
228 70 73 71 1.043 1.014
456 86 96 93 1.116 1.081
912 170 213 204 1.253 1.2
1824 220 395 388 1.795 1.764
3648 488 432 422 0.8852 0.8648
7296 654 800 783 1.223 1.197
14592 1250 1344 1326 1.075 1.061
29184 1258 1530 1508 1.216 1.199
58368 1936 2519 2490 1.301 1.286

Table 2: Values for c = 2
3

T N(T) F (T) M(T) F (T)/N(T) M(T)/N(T)
3 2 2 3 1 1.5
9 2 9 9 4.5 4.5
27 10 30 26 3 2.6
81 14 39 38 2.786 2.714
243 98 128 124 1.306 1.265
729 122 207 197 1.697 1.615
2187 378 632 622 1.672 1.646
6561 758 926 903 1.222 1.191
19683 2046 2516 2479 1.23 1.212
59049 2758 3936 3879 1.427 1.406

15

Figure 1: Values of N(T), M(T) and F (T) for c = 1
2

57 114 228 456 912 1824 3648 7296 14592 29184 58368

101

102

103

T

N(T)

F (T)

M(T)

Figure 2: Ratios M(T)/N(T) and F (T)/N(T) for c = 1
2

57 114 228 456 912 1824 3648 7296 14592 29184 58368

1

1.5

2

2.5

T

M(T)/N(T)

F (T)/N(T)

16

Figure 3: Values of N(T), M(T) and F (T) for c = 2
3

3 9 27 81 243 729 2187 6561 19683 59049
100

101

102

103

T

N(T)

F (T)

M(T)

Figure 4: Ratios M(T)/N(T) and F (T)/N(T) for c = 2
3

3 9 27 81 243 729 2187 6561 19683 59049

1

2

3

4

T

M(T)/N(T)

F (T)/N(T)

17

8 Code for the computation
The following Python code was used to carry out the computations. The algorithm for modular
exponentiation is a well-known algorithm taken from [2]. We also use the labmath package, see
[1].

"""
@author : Tara Trauthwein
"""

import math
from decimal import Decimal
import labmath as lm

returns the p- valuation of a number n, where p is a prime
def val(p,n):

count =0
while(n%p==0):

count +=1
n/=p

return count

returns the number of primitive words
p: number of different letters
n: length of a word
l: list of divisors of n
def m(p,n,l):

return sum(lm. mobius (int(n/d)) * Decimal (p)** Decimal (d) for d
in l)

returns the number of primitive even words over the alphabet
{0 ,1 ,2} following the first formula

n: length of a word
l: list of divisors of n
def e(n,l):

psum =0
for d in l:

val2=val (2,d)
internal = Decimal (’3’)** Decimal (d)
internal -= sum(Decimal (’3’)**(Decimal (d)/(Decimal (’2’)**

Decimal (k))) \
for k in range (1, val2 +1))

internal += val2 +1
psum += lm. mobius (int(n/d)) * Decimal (0.5) * internal

return psum

returns the number of primitive even words over the alphabet
{0 ,1 ,2} following the second formula

n: length of a word
l: list of divisors of n
def e_2(n,l):

18

s=0
for d in l:

if (int(n/d) %2==0) :
a= Decimal (3) ** Decimal (d)

else:
a=(Decimal (3) ** Decimal (d)+1)* Decimal (’0.5 ’)

s+=lm. mobius (int(n/d))*a
return s

modular exponentiation
returns (base ** expo) mod modu
def mod_exp (base ,expo ,modu):

if (modu ==1):
return 0

exp=bin(expo)[2:]
res =1
base %= modu
for i in exp [:: -1]:

if (i==’1’):
res *= base
res %= modu

base *= base
return res

returns the period length of a rational p/q
or equivalently , the order of 3 in Z/qZ
q: denominator
toti: Euler totient of q
uses the fact that the order divides toti
calculates (3**d) mod q for d dividing toti
def length (q,toti):

list_div =list(lm. divisors (toti))
list_div .sort ()

for i in range (1, len(list_div) -1):
p= list_div [i]
if (p<math.log(q ,3)):

continue
if (mod_exp (3,p,q)==1):

return p
return toti

returns MLO(q) if 3 does not divide q
return -1 if 3 divides q
def MLO(q):

if (q==1):
return 2

if (q %3==0) :
return -1

toti=lm. totient (q ,1)
l= length (q,toti)

19

listl=list(lm. divisors (l))
res= Decimal (toti)/ Decimal (e(l,listl))* Decimal (m(2,l,listl))
return round(res)

returns FP(q)
def FP(q):

toti=lm. totient (q ,1)
order= length (q,toti)
return (Decimal (’2’)/ Decimal (’3’))** order*toti *2

20

References
[1] Lucas Brown. labmath. Version 1.1.0. url: https://pypi.org/project/labmath/.
[2] Cormen, Leiserson, Rivest, and Stein. Algorithmique. 3rd ed. Paris: Dunod, 2010. isbn:

978-2-10-054526-1.
[3] Juhani Karhumäki. Combinatorics of Words. Lecture notes. University of Turku. url:

https://www.utu.fi/en/units/sci/units/math/staff/Documents/karhumaki/
combwo.pdf.

[4] Alexander Rahm, Noam Solomon, Tara Trauthwein, and Barak Weiss. The distribution of
rational numbers on Cantor’s middle thirds set. 2019. arXiv: 1909.01198 [math.NT].

[5] Zvezdelina Stankova-Frenkel. Möbius Inversion Formula. Multiplicative Functions. Berkley
Math Circle 1998-99. UC Berkeley, 1998-1999. url: https : / / math . berkeley . edu /
~stankova/MathCircle/Multiplicative.pdf.

21

https://pypi.org/project/labmath/
https://www.utu.fi/en/units/sci/units/math/staff/Documents/karhumaki/combwo.pdf
https://www.utu.fi/en/units/sci/units/math/staff/Documents/karhumaki/combwo.pdf
https://arxiv.org/abs/1909.01198
https://math.berkeley.edu/~stankova/MathCircle/Multiplicative.pdf
https://math.berkeley.edu/~stankova/MathCircle/Multiplicative.pdf

	Introduction
	Recall from combinatorics of words
	Möbius and Euler totient function
	The ternary expansion and purely periodic rationals
	Computing the number of primitive words
	Computing the Number of Primitive Words
	Computing the Number of Primitive Even Words
	The First Formula
	The Second Formula

	Approximation formulas
	Results
	Code for the computation

