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Abstract. � The paper is a survey of recent developments in the asymptotic theory of global
�elds and varieties over them. First, we give a detailed motivated introduction to the asymptotic
theory of global �elds which is already well shaped as a subject. Second, we treat in a more
sketchy way the higher dimensional theory where much less is known and many new research
directions are available.

Résumé. � Cet article est un survol des développements récents dans la théorie asymptotique
des corps globaux et des variétés algébriques dé�nies sur les corps globaux. Dans un premier
temps, nous donnons une introduction détaillée et motivée à la théorie asymptotique des corps
globaux, théorie déjà bien établie. Puis nous aborderons plus rapidement la théorie asymptotique
en dimension supérieure où peu de choses sont connues et où bien des directions de recherche
sont ouvertes.

1. Introduction: the origin of the asymptotic theory of global �elds

The goal of this article is to give a survey of asymptotic methods in number theory and

algebraic geometry developed in the last decades. The problems that are treated by the

asymptotic theory of global �elds (that is number �elds or function �elds) and varieties over

them are quite diverse in nature. However, they are connected by the use of zeta functions,

which play the key role in the asymptotic theory.

We begin by a very well known problem which lies at the origin of the asymptotic theory

of global �elds. Let Fr be the �nite �eld with r elements. For a smooth projective curve C
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over Fr we let Nr(C) be the number of Fr-point on C. We denote by g(C) be the genus of C.

The problem consists of �nding the maximum Nr(g) of the numbers Nr(C) over all smooth

projective curves of genus g over Fr :

Nr(g) = max
g(C)=g

Nr(C).

The �rst upper bound was discovered by André Weil in 1940s as a direct consequence of his

proof of the Riemann hypothesis for curves over �nite �elds. He showed that Nr(C) satis�es

the inequality

Nr(C) ≤ r + 1 + 2g
√
r.

Weil bound though extremely useful in many applications is far from being optimal. A

dramatic search for the improvements of this bound and for the examples giving lower bounds

on Nr(g) has begun in 1980s with the discovery of Goppa that curves over �nite �elds with

many points can be used to construct good error-correcting codes. To show how important

the developments in this area were it su�ces to mention the names of some mathematicians

who turned their attention to these questions: J.-P. Serre, V. Drinfeld, Y. Ihara, H. Stark, R.

Schoof, M. Tsfasman, S. Vl duµ, G. van der Geer, K. Lauter, H. Stichtenoth, A. Garcia, etc.

As suggested in [Ser85] by J.-P. Serre the cases when g is small and that when g is large

require completely di�erent treatment. That is the latter case which interests us in this article.

The �rst major result in this direction was the following theorem of V. Drinfeld and S. Vl duµ

[DV]:

Theorem 1.1 (Drinfeld�Vl duµ). � For any family of smooth projective curves {Ci} over
Fr of growing genus we have

lim sup
i→∞

Nr(Ci)

g(Ci)
≤
√
r − 1.

Moreover, in the case, when r is a square this bound turns out to be optimal. The families

of curves, attaining this bound are constructed in many di�erent ways: modular curves,

Drinfeld modular curves, explicit iterated constructions, etc. We refer the reader to section 4

for more details. This result, signi�cantly improved and then reinterpreted in terms of limit

zeta functions by M. Tsfasman and S. Vl duµ, lies at the very base of the asymptotic theory

of global �elds. We will discuss all this in detail in section 2. It is also possible to extend

the Drinfeld�Vl duµ inequalities to the case of higher dimensional varieties. This serves as a

keystone in the construction of the higher dimensional asymptotic theory (see section 5).

We will now turn our attention to yet another source of development of the asymptotic theory,

this time in the case of number �elds. Let K be an algebraic number �eld, that is a �nite

extension of Q. We denote by nK = [K : Q] its degree, and by DK its discriminant. An

important question (both on its own account and due to its applications in various domains

of number theory, arithmetic geometry and theory of sphere packings) is to know the rate of

grows of discriminants of number �elds. The �rst bound onDK was obtained by H. Minkowsky

using the geometry of numbers. This bound was improved more than half a century later by
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H. Stark, J.-P. Serre and A. Odlyzko ([Sta74], [Ser75], [Odl76], [Odl90]) who used analytic

methods involving zeta functions. The bounds they prove are as follows:

Theorem 1.2 (Odlyzko). � For a family of number �elds {Ki} we have

log |DKi | ≥ A · r1(Ki) + 2B · r2(Ki) + o(nKi),

where r1(Ki) and r2(Ki) are respectively the number of real and complex places of Ki. Uncon-

ditionally, we can take A = log(4π) + γ + 1 ≈ 60.8, B = log(4π) + γ ≈ 22.3, and, assuming

the generalized Riemann Hypothesis (GRH), one can take, A = log(8π) + γ+ π
2 ≈ 215.3, B =

log(8π) + γ ≈ 44.7, where γ = 0.577 is Euler's gamma constant.

The fact that GRH drastically improves the results is omnipresent in the asymptotic theory

of global �elds. Fortunately, GRH is known for zeta functions of curves over �nite �elds (Weil

bounds) and, more generally, of varieties over �nite �elds (Deligne's theorem), which allows

to have both stronger results and simpler proofs in the case of positive characteristic.

M. Tsfasman and S. Vl duµ managed to generalize the above inequalities taking into account

the contribution of �nite places of the �elds. In fact, the restriction of the so-called basic

inequality proven by M. Tsfasman and S. Vl duµ to in�nite primes gives us the inequalities

of Odlyzko�Serre. If we restrict the basic inequality to �nite places we obtain an analogue of

the generalized Drinfeld�Vl duµ inequality in the case of number �elds. The reader will �nd

more information on this in the next section of the paper.

The last, but not least, problem that led to the development of the asymptotic theory of global

�elds and varieties over them was the Brauer�Siegel theorem. Let hK denote the class number

of a number �eld K and let RK be its regulator. The classical Brauer�Siegel theorem, proven

by Siegel ([Sie]) in the case of quadratic �elds and by Brauer ([Bra]) in general describes

the behaviour of the product hKRK in families of number �elds. The initial motivation for it

was a conjecture of Gauss on imaginary quadratic �elds, however it has got many important

applications elsewhere. The theorem can be stated as follows:

Theorem 1.3 (Brauer�Siegel). � For a family of number �elds {Ki} we have

lim
i→∞

log(hKiRKi)

log
√
|DKi |

= 1

provided the family satis�es two conditions:

(i) lim
i→∞

nKi

gKi

= 0;

(ii) either GRH holds, or all the �elds Ki are normal over Q.

It is possible to remove the �rst and relax the second conditions of the theorem. The �rst step

towards it was made by Y. Ihara in [Iha83] who considered families of unrami�ed number

�elds. A complete answer (at least modulo GRH) was given by M. Tsfasman and S. Vl duµ

in [TV02] who showed how to treat this problem in the framework of the asymptotic theory

of number �elds, in particular using the concept of limit zeta functions. The corresponding

question for curves over �nite �elds is also of great interest since it describes the asymptotic
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behaviour of the number of rational points on Jacobians of curves over �nite �elds. All this

will be discussed in detail in the section 3.

In our introduction we mostly considered the one dimensional case of number �elds or function

�elds. Here the theory is best developed. However, there is quite a number of results and

conjectures for higher dimensional varieties with particularly nice arithmetical applications.

Some of the results in this actively developing area are discussed in section 5.

Let us �nally say that, despite of the fact that the theory of error correcting codes and the

theory of sphere packings are just brie�y mentioned in our introduction their role in the

creation of the asymptotic theory of global �elds is fundamental. Indeed many questions

some of which were mentioned here (maximal number of points on curves, growth of the

discriminants, etc.) received particular attention due to their relation to error-correcting

codes or sphere packings.

2. Basic concepts and results. Tsfasman�Vl duµ invariants of in�nite global

�elds

Many authors considered the behaviour of arithmetic data (decomposition of primes, genus,

root discriminant, class number, regulator etc.) in families of global �elds. Tsfasman and

Vl duµ laid the foundation for the asymptotic theory of global �elds in order not to consider

�elds in a family, but the limit object (say, a limit zeta-function) that would encode the

information concerning the asymptotics of the initial arithmetic data.

In this section we introduce some de�nitions and give basic properties of families of global

�elds.

2.1. Tsfasman�Vl duµ invariants. � Arguments and proofs for the results from this

subsection can be found in [TV02]. Let us �rst de�ne the objects we are to work with. Let

r be a power of a prime p, and let Fr denote the algebraic closure of Fr.

De�nition 2.1. � A family of global �elds is a sequence K = {Kn}n∈N such that:

1. Either all the Kn are �nite extensions of Q or all the Kn are �nite extensions of Fr(t)
with Fr ∩Kn = Fr.

2. if i 6= j, Ki is not isomorphic to Kj .

A tower of global �elds is a family satisfying in addition Kn ⊂ Kn+1 for every n ∈ N. An
in�nite global (resp. number, resp. function) �eld is the limit of a tower of global (resp.

number, resp. function) �elds, i.e. it is the union
∞⋃
n=1

Kn.

De�nition 2.2. � The genus gK of a function �eld is the genus of the corresponding smooth

projective curve. We de�ne the genus of a number �eld K as gK = log
√
|DK |, where DK is

the discriminant of K.

As there are (up to an isomorphism) only �nitely many global �elds with genus smaller than

a �xed real number g, we have the following proposition.
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Proposition 2.3. � For any family {Ki} of global �elds the genus gKi → +∞.

Thus, in the number �elds case, any in�nite algebraic extension of Q is an in�nite number

�eld, whereas in the function �elds case, we require the in�nite algebraic extension of Fr(t)
to contain a sequence of function �elds with genus going to in�nity.

Let us now de�ne the so-called Tsfasman�Vl duµ invariants of a family of global �elds.

Throughout the paper, we use the acronyms NF and FF for the number �eld and the function

�eld cases respectively. As before, the GRH indication means that we assume the generalized

Riemann Hypothesis for Dedekind zeta-functions.

First we introduce some notation to be used throughout the paper:

Q the �eld Q (NF), Fr(t) (FF);
nK [K : Q];

DK discriminant of K (NF);

gK the genus of K (FF ), the genus of K equal to log
√
|DK | (NF );

Plf (K) the set of �nite places of K;

Np the norm of a place p ∈ Plf (K);

deg p logr Np (FF );

Φq(K) the number of places of K of norm q;

ΦR(K) the number of real places of K (NF);

ΦC(K) the number of complex places of K (NF).

We consider the set of possible indices for the Φq,

A =

{{
R,C, pk | p prime, k ∈ Z>0

}
(NF ){

rk | k ∈ Z>0

}
(FF )

,

and Af its subset of �nite parameters
{
pk | p prime, k ∈ Z>0

}
.

De�nition 2.4. � We say that a family K = {Ki} of global �elds is asymptotically exact

if the following limit exists for any q ∈ A :

φq := lim
i→+∞

Φq(Ki)

gKi

.

It is said to be asymptotically good if in addition one of the φq is nonzero, and asymptotically

bad otherwise. The numbers φq are called the Tsfasman�Vl duµ invariants of the family K.

This de�nition has two origins. The �rst one is the information theory since the families

giving good algebraic geometric codes are those for which φr exists and is big. The second

one is more technical and can be seen through Weil's explicit formulae. For convenience we

also put φ∞ = lim
nKi

gKi

= φR + 2φC.

Being asymptotically exact is not a restrictive condition. To be precise:

Proposition 2.5. � 1. Any family of global �elds contains an asymptotically exact sub-

family.

2. Any tower of global �elds is asymptotically exact and the φq's depend only on the limit.
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We can thus de�ne the Tsfasman�Vl duµ invariants of an in�nite global �elds K as the invari-

ants of any tower having limit K. From now on, we only consider asymptotically exact families,

since they provide natural framework for asymptotic considerations. One of the problems of

the asymptotic theory is to understand the set of possible {φq}. In the next propositions we

describe some the general properties of the {φq}. Let us start with the basic inequalities:

Theorem 2.6 (Tsfasman�Vl duµ). � For any asymptotically exact family of global �elds,

the following inequalities hold:

(NF −GRH)
∑
q

φq log q
√
q − 1

+ (log
√

8π +
π

4
+
γ

2
)φR + (log 8π + γ)φC ≤ 1,

(NF )
∑
q

φq log q

q − 1
+ (log 2

√
π +

γ

2
)φR + (log 2π + γ)φC ≤ 1,

(FF )
∞∑
m=1

mφrm

r
m
2 − 1

≤ 1,

where γ is the Euler constant.

This result is central in what follows. For instance, it is used to show the convergence of

the limit zeta-function associated to the family. It is proven using the Weil explicit formulae,

the e�ective Chebotarev density theorem for number �elds and the Riemann hypothesis for

function �elds.

In the case of towers of number �elds (and of function �elds if we consider suitable quantities),

the degree of the extension gives an upper bound for the number of places above a prime

number p:

Proposition 2.7. � For an asymptotically exact family of number �elds and any prime num-

ber p the following inequality holds:

+∞∑
m=1

mφpm ≤ φR + 2φC.

Let us �nally de�ne the de�ciency δK of an asymptotically exact family K = {Ki} of global
�elds as the di�erence between the two sides of the basic inequalities under GRH:

(NF ) δK = 1−
∑
q

φq log q
√
q − 1

− (log
√

8π +
π

4
+
γ

2
)φR − (log 8π + γ)φC

and

(FF ) δK = 1−
∞∑
m=1

mφrm

r
m
2 − 1

.

A remarkable fact is that the de�ciency of in�nite global �elds is increasing with respect to

the inclusion (see [Leb10]): K ⊂ L implies δK ≤ δL. One knows that �elds of zero de�ciency

exist in the function �elds case (c.f. section 4). Such in�nite global �elds are called optimal,

and they are of particular interest for the information theory.
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2.2. Rami�cation, prime decomposition and invariants. � The precise statements

and proofs of the results from this subsection can be found in [GSR] and [Leb10]. The

Tsfasman�Vl duµ invariants of in�nite global �elds contain information on the rami�cation

and the decomposition of places in these �elds. Indeed, one sees from Hurwitz genus formula

that any �nitely rami�ed and tamely rami�ed tower of number �elds is asymptotically good

(because it has bounded root discriminant). For function �elds, we have to ask in addition

for the existence of a split place. It is not excluded that there exists an asymptotically good

in�nite global �eld with in�nitely many rami�ed places and no split place, but no examples

have been found so far. In the case of function �elds, A. Garcia and H. Stichtenoth provided

a widely rami�ed optimal tower and an everywhere rami�ed tower of function �elds with

bounded g/n is constructed in [DPZ]. Unfortunately, we do not know anything similar for

number �elds.

In general, we expect asymptotically good towers to have very little rami�cation and some

split places. The next question, �rst raised by Y. Ihara, is how many places split completely

in a tower K of global �eld. It follows from the Chebotarev density theorem that the set of

completely split places has in general a zero analytic density, that is

lim
s→1+

∑
p∈D Np−s∑

p∈Plf (Q) Np−s
= 0,

where D is the set of places of Q that split completely in K/Q. In the case of asymptotically

good �elds,
∑
p∈D

Np−1 is even bounded. However, in the case of asymptotically bad �elds, the

numerator can have an in�nite limit whereas the rami�cation locus is very small (but in�nite).

We refer the reader to [Leb10] for a more detailed treatment of the above questions.

3. Generalized Brauer�Siegel theorem and limit zeta-functions

3.1. Generalizations of the Brauer�Siegel theorem. � Now we turn our attention to

the Brauer�Siegel theorem. The in-depth study of mathematical tools involved in it leads to

an important notion of limit zeta functions which plays a key role in the study of asymptotic

problems.

While looking at the statement of the Brauer�Siegel theorem (theorem 1.3) one immediately

asks a question whether the two conditions present in it are indeed necessary. It is a right

guess that the second condition involving normality is technical in its nature (though getting

rid of it would be a breakthrough in the analytic number theory since it is related to the

so-called Siegel zeroes of zeta-functions � the real zeroes which lie abnormally close to s = 1;

of course, presumably they do not exist). The second condition nK/ log
√
|DK | → 0 looks

much trickier. Using the inequalities from proposition 2.7 it is immediate that this condition

is equivalent to the fact that the family we consider is asymptotically bad.

A fundamental theorem of M. Tsfasman and S. Vl duµ from [TV02] allows both to treat the

asymptotically good case of the Brauer�Siegel theorem and to relax the second condition.
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We formulate it together with a complementary result by A. Zykin [Zyk05] which relaxes

the second condition in the asymptotically bad case. Before stating the result we give the

following de�nition:

De�nition 3.1. � We say that a number �eld K is almost normal if there exists a tower

K = Kn ⊃ · · · ⊃ K1 ⊃ K0 = Q, where each step Ki/Ki−1 is normal.

Theorem 3.2 (Tsfasman�Vl duµ�Zykin). � Assume that for an asymptotically exact fam-

ily of number �elds {Ki} either GRH holds or all the �elds Ki are almost normal. Then we

have:

lim
i→∞

log(hKiRKi)

gKi

= 1 +
∑
q

φq log
q

q − 1
− φR log 2− φC log 2π,

the sum being taken over all prime powers q.

For an asymptotically bad family of number �elds we have φR = 0 and φC = 0 as well as φq = 0

for all prime powers q, so the conclusion of the theorem takes the form of that of the classical

Brauer�Siegel theorem. However, there are examples of families of number �elds where the

right hand side of the equality in the theorem is either strictly less or strictly greater than

one (see [TV02]). Let us mention one particularly nice corollary of the generalized Brauer�

Siegel theorem due to M. Tsfasman and S. Vl duµ: a bound on the regulators that improves

Zimmert's bound (see [Zim], his bound can be written as lim inf
logRKi
gKi

≥ (log 2 + γ)φR +

2γφC).

Theorem 3.3 (Tsfasman�Vl duµ). � For a family of almost normal number �elds {Ki}
(or any number �elds under the assumption of GRH) we have

lim inf
logRKi

gKi

≥ (log
√
πe+ γ/2)φR + (log 2 + γ)φC.

The proof of this bound is far from being trivial, it can be found in [TV02].

The function �eld version of the Brauer�Siegel theorem is both easier to prove and requires

no supplementary conditions (like normality or GRH). In fact, it was obtained before the

corresponding theorem for number �elds and allowed to guess what the result for number

�elds should be (for a proof see [Tsf92] or [TV97]).

Theorem 3.4 (Tsfasman�Vl duµ). � For an asymptotically exact family of smooth pro-

jective curves {Xi} over a �nite �eld Fr we have:

lim
i→∞

log hi
gi

= log r +
∞∑
f=1

φrf log
rf

rf − 1
,

where hi = h(Xi) = |(JacXi)(Fr)| is the cardinality of the Jacobian of Xi over Fr.
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Let κK = Res
s=1

ζK(s) be the residue of the Dedekind zeta function ζK(s) =
∏
q

(1− q−s)−Φq(K)

of the �eld K at s = 1. Using the residue formula (see [Lan94, Chapter VIII] and [TVN,

Chapter III])

κK =
2ΦR(K)(2π)ΦC(K)hKRK

wK
√
|DK |

(NF case);

κK =
hKr

g

(r − 1) log r
(FF case)

(here wK is the number of roots of unity in K) one can see that the question about the

behaviour of the ratio from the Brauer�Siegel theorem is reduced to the corresponding question

for κK . To put it into a more general framework, we �rst seek an interpretation of the

arithmetic quantities we would like to study in terms of special values of certain zeta functions,

then we study the behaviour of these special values in families using analytic methods. We

will see in section 5 another applications of this principle. One also notices that this reduction

step explains the appearance of the GRH in the statement of the Brauer�Siegel theorem.

Let us formulate yet another version of the generalized Brauer�Siegel theorem proven by

Lebacque in [Leb07, Theorem 7]. It has the advantage of being explicit with respect to the

error terms, thus giving information about the Brauer�Siegel ratio on the ��nite level�.

Theorem 3.5 (Lebacque). � Let K be a global �eld. Then

(i) in the function �eld case

log(κK log r) =
N∑
f=1

Φrf log
rf

rf − 1
− logN − γ +O

( gK
NrN/2

)
+O

(
1

N

)
;

(ii) in the number �eld case assuming GRH

logκK =
∑
q≤x

Φq log
q

q − 1
− log log x− γ +O

(
nK log x√

x

)
+O

(
gK√
x

)
,

where γ = 0.577 . . . is the Euler constant. The constants in O are absolute and e�ectively

computable (and, in fact, not very big).

This theorem can also be regarded as a generalization of the Mertens theorem (see [Leb07]).

A slight improvement of the error term (as before, assuming GRH) was obtained in [LZ]. An

unconditional number �eld version of this result is also available but is a little more di�cult

to state ([Leb07, Theorem 6]). We should also note that Lebacque's approach leads to a

uni�ed proof of the asymptotically bad and asymptotically good cases of theorem 3.2 with or

without the assumption of GRH.

3.2. Limit zeta-functions. � For the moment the asymptotic theory of global �elds looks

like a collection of similar but not directly related results. The situation is clari�ed immensely

by means of the introduction of limit zeta functions.
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De�nition 3.6. � The limit zeta function of an asymptotically exact family of global �elds

K = {Ki} is de�ned as

ζK(s) =
∏
q

(1− q−s)−φq(K),

the product being taken over all prime powers in the number �eld case and over prime powers

of the form q = rf in the case of curves over Fr.

The basic inequalities from theorem 2.6 give the convergence of the above in�nite product

for Re s ≥ 1
2 with the assumption of GRH and for Re s ≥ 1 without it (in particular, in the

function �eld case the in�nite product converges for Re s ≥ 1
2). In fact, the basic inequalities

themselves can be restated in terms of the values of limit zeta functions. To formulate them

we introduce the completed limit zeta function:

ζ̃K(s) = es2−φRπ−sφR/2(2π)−sφCΓ
(s

2

)φR
Γ(s)φCζK(s) (NF case);

ζ̃K(s) = rsζK(s) (FF case).

Let ξ̃K(s) = ζ̃ ′K(s)/ζ̃K(s) be the logarithmic derivative of the completed limit zeta function.

Then the basic inequalities from section 2 take the following form:

Theorem 3.7 (Basic inequalities). � For an asymptotically exact family of global �elds

K = {Ki} we have ξ̃K(1
2) ≥ 0 in the function �eld case and assuming GRH in the number

�eld case and ξ̃K(1) ≥ 0 without the assumption of GRH.

Let us give an interesting interpretation of the de�ciency in terms of the distribution of zeroes

of zeta functions on the critical line. In fact, the results we are going to state are interesting

on their own. To a global �eld K we associate the counting measure ∆K = 1
gK

∑
ρ
δt(ρ), where

t(ρ) = Im ρ in the number �eld case and t(ρ) = 1
log r Im ρ in the function case; the sum is

taken over all zeroes ρ of ζK(s) in the number �eld case and over all zeroes ρ of ζK(s) with

t(ρ) ∈ (−π, π] in the function �eld case (in the case of function �elds ζK(s) is periodic with

the period equal to 2π/ log r), δt is the Dirac (atomic) measure at t. Thus we get a measure on

R in the number �eld case and on R/Z in the function �eld case. The asymptotic behaviour

of ∆K was �rst considered by Lang [Lan71] in the asymptotically bad case. The following

result is proven in [TV02, Theorem 5.2] and [TV97, Theorem 2.1].

Theorem 3.8 (Tsfasman�Vl duµ). � For an asymptotically exact family of global �elds

K = {Ki}, assuming GRH, the limit lim
i→∞

∆Ki exists in an appropriate space of measures (to

be precise, in the space of measures of slow growth on R in the NF case,and in the space of

measures on R/Z in the FF case). Moreover, the limit is a measure with continuous density

MK(t) = Re ξ̃K
(

1
2 + it

)
.

Of course, the expression for MK(t) can be written explicitly using the invariants φq. Let

us note two important corollaries of the theorem. First, we get an interpretation for the
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de�ciency δK = ξ̃K
(

1
2

)
= MK(0) as the asymptotic number of zeroes of ζKi(s) accumulating

at s = 1
2 . Second, the theorem shows that for any family of number �elds zeroes of their

zeta-functions get arbitrarily close to s = 1
2 (and, in a sense, we even know the rate at which

zeroes of ζKi(s) approach to this point).

3.3. Limit zeta-functions and Brauer�Siegel type results. � Let us turn our at-

tention to the Brauer�Siegel type results. The formulae from theorems 3.2 and 3.4 can be

rewritten as lim
i→∞

logκKi
gKi

= log ζK(1). Furthermore, using the absolute and uniform convergence

of in�nite products for zeta functions for Re s > 1, Tsfasman and Vl duµ prove in [TV02,

Proposition 4.2] that for Re s > 1 the equality lim
i→∞

log ζKi
(s)

gKi
= log ζK(s) holds. In fact, this

equality remains valid for Re s < 1 (at least if we assume GRH in the number �eld case). The

proof of the next theorem can be found in [Zy10] in the number �eld case and in [Zyk11] in

the function �eld case (where the same problem is treated in a broader context).

Theorem 3.9 (Zykin). � For an asymptotically exact family of global �elds K = {Ki} for
Re s > 1

2 we have

lim
i→∞

log((s− 1)ζKi(s))

gKi

= log ζK(s) (NF case assuming GRH);

lim
i→∞

log((rs − 1)ζKi(s))

gKi

= log ζK(s) (FF case).

The convergence is uniform on compact subsets of the half-plane {s | Re s > 1
2}.

The case s = 1 of theorem 3.9 is equivalent to the Brauer�Siegel theorem and current tech-

niques does not allow to treat it in full generality without the assumption of GRH. Thus

getting unconditional results similar to theorem 3.9 looks inaccessible at the moment. The

analogue of the above result for s = 1
2 is considerably weaker and one has only an upper

bound:

Theorem 3.10 (Zykin). � Let ρKi be the �rst non-zero coe�cient in the Taylor series ex-

pansion of ζKi(s) at s = 1
2 , i. e. ζKi(s) = ρKi

(
s− 1

2

)rKi +o
((
s− 1

2

)rKi
)
. Then in the function

�eld case or in the number �eld case assuming that GRH is true, for any asymptotically exact

family of global �elds K = {Ki} the following inequality holds:

lim sup
i→∞

log |ρKi |
gKi

≤ log ζK

(
1

2

)
.

The interest in the study of the asymptotic behaviour of zeta functions at s = 1
2 is partly

motivated by the corresponding problem for L-functions of elliptic curves over global �elds,

where this value is related to deep arithmetic invariants of the elliptic curves via the Birch�

Swinnerton-Dyer conjecture. We refer the reader to section 5 for more details. The question

whether the equality holds in theorem 3.10 is rather delicate. It is related to the so called

low-lying zeroes of zeta functions, that is the zeroes of ζK(s) having small imaginary part
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compared to gK . It might well happen that the equality lim
i→∞

log |ρKi
|

gKi
= log ζK(1

2) does not

hold for all asymptotically exact families K = {Ki} since the behaviour of low-lying zeroes

is known to be rather random. Nevertheless, it might hold for �most� families (whatever it

might mean).

To illustrate how hard the problem may be, let us remark that Iwaniec and Sarnak studied

a similar question for the central values of L-functions of Dirichlet characters [IS99] and

modular forms [IS00]. They manage to prove that there exists a positive proportion of

Dirichlet characters (modular forms) for which the logarithm of the central value of the

corresponding L-functions divided by the logarithm of the analytic conductor tends to zero.

The techniques of the evaluation of molli�ed moments used in these papers are rather involved.

We also note that, to our knowledge, there has been no investigation of low-lying zeroes of

L-functions of growing degree. It seems that the analogous problem in the function �eld case

has neither been very well studied.

Let us indicate that the corresponding question for the logarithmic derivatives of zeta functions

has a negative answer. Indeed, the functional equation implies that lim
i→∞

ζ′Ki
(1/2)

ζKi
(1/2) = 1 for any

family of function �elds Ki. However, the logarithmic derivative of the limit zeta function

ζK(s) at s = 1
2 equals one only for asymptotically optimal families (c.f. theorem 3.7).

As a corollary of theorem 3.9 one can obtain a result on the asymptotic behaviour of Euler�

Kronecker constants.

De�nition 3.11. � The Euler�Kronecker constant of a global �eld K is de�ned as γK =
c0(K)
c−1(K) , where ζK(s) = c−1(K)(s− 1)−1 + c0(K) +O(s− 1).

In [Iha06] Y. Ihara made an extensive study of the Euler-Kronecker constants of global �elds,

in particular, he obtained an asymptotic formula for their behaviour in families of curves over

�nite �elds. A complementary result in the number �eld setting was obtain in [Zy10] as a

corollary of theorem 3.9. In fact the theorem 3.9 gives that in asymptotically exact families

the coe�cients of the Laurant series at s = 1 of the logarithmic derivatives ζ ′Ki
(s)/ζKi(s) tend

to the corresponding coe�cients of the Laurant series expansion of the logarithmic derivative

of the limit zeta function. For zeroes coe�cient this becomes:

Corollary 3.12 (Ihara�Zykin). � Assuming GRH in the number �eld case and uncondi-

tionally in the function �eld case, for any asymptotically exact family of global �elds {Ki} we
have

lim
i→∞

γKi

gKi

= −
∑
q

φq
log q

q − 1
.

For the sake of completeness let us mention an explicit analogue of theorem 3.9 obtained in

[LZ]:

Theorem 3.13 (Lebacque�Zykin). � For any global �eld K, any integer N ≥ 10 and any

ε = ε0 + iε1 such that ε0 = Re ε > 0 we have
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(i) in the function �eld case:

N∑
f=1

fΦrf

r( 1
2

+ε)f − 1
+

1

log r
· ZK

(
1

2
+ ε

)
+

1

r−
1
2

+ε − 1
= O

(
gK
rε0N

(
1 +

1

ε0

))
+O

(
r

N
2

)
;

(ii) and in the number �eld case assuming GRH:

∑
q≤N

Φq log q

q
1
2

+ε − 1
+ ZK

(
1

2
+ ε

)
+

1

ε− 1
2

=

= O

(
|ε|4 + |ε|

ε20
(gK + nK logN)

log2N

N ε0

)
+O

(√
N
)
.

3.4. Some other topics related to limit zeta-functions. � Let us �nally state some

related results on the asymptotic properties of the coe�cients of zeta functions. For the

moment they are only available in the function �eld case (see [TV97]). Let K/Fr(t) be

a function �eld and let ζK(s) =
∞∑
m=1

Dmr
−ms be the Dirichlet series expansion of the zeta

function of K. One knows that Dm is equal to the number of e�ective divisors of degree m on

the corresponding curve. We have the following results on the asymptotic behaviour of Dm :

Theorem 3.14 (Tsfasman�Vl duµ). � For an asymptotically exact family of function �elds

K = {Ki} and any real µ > 0 we have

lim
i→∞

logD[µg](Ki)

gKi

= min
s≥1

(µs log q + log ζK(s)).

Moreover, the minimum can be evaluated explicitly via φq (c.f. [TV97, Proposition 4.1]).

Theorem 3.15 (Tsfasman�Vl duµ). � For an asymptotically exact family of function �elds

K = {Ki}, any ε > 0 and any m such that Dm
g ≥ µ1 + ε we have

logDm(Ki)

hKi

=
qm−g+1

q − 1
(1 + o(1))

for g →∞, o(1) being uniform in m. Here µ1 is the largest of the two roots of the equation

µ

2
+ µ logr

µ

2
+ (2− µ) logr

(
1− µ

2

)
= −2 logr ζK(1).

We should note that o(1) from theorem 3.15 is additive whereas most of the previous results

were estimates of multiplicative type (they contained logarithms of the quantities in question).

It would be interesting to know whether there exist analogues of the above results in the

number �eld case.

Let us conclude by refering the reader to the Section 6 of [TV02] for a list of open questions.
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4. Examples

4.1. Towers of modular curves. � Let us begin with the examples of asymptotically

optimal families of curves over �nite �elds coming from towers of modular curves. The �rst

constructions were carried out by Ihara ([Iha81]), Tsfasman�Vl duµ�Zink ([TVZ]). The

research in this direction was continued by N. Elkies and many others. Let us describe several

constructions.

4.1.1. Classical modular curves. � Let us start with the construction of towers of modular

curves which leads to asymptotically optimal in�nite function �elds. For further information,

we refer the reader to [TV92, Chapter 4]. It is well known that the modular group Γ(1) =

PSL2(Z) acts on the Poincaré upper half-plane h by

(
a b

c d

)
· z =

az + b

cz + d
. We �x a positive

integer N and we de�ne the principal congruence subgroup of level N by

Γ(N) =

{
γ ∈ Γ(1) | γ ≡

(
1 0

0 1

)
mod N

}
.

Γ(N) C Γ(1) and Γ(1)/Γ(N) is isomorphic to PSL2(Z/NZ). In particular,

[Γ(1) : Γ(N)] =


N3

2

∏̀
|N

(
1− `−2

)
si N ≥ 3

6 si N = 2.

We also put Γ0(N) =

{
γ ∈ Γ(1) | γ ≡

(
∗ ∗
0 ∗

)
mod N

}
, so that Γ(N) ⊂ Γ0(N). We have

[Γ(1) : Γ0(N)] = N
∏
`|N

(
1− `−1

)
.

Let now Γ be a congruence subgroup, that is, any subgroup of Γ(1) containing Γ(N). The most

important case for us is Γ = Γ(N) or Γ0(N). The set YΓ = Γ\h is equipped with an analytic

structure, but is not compact. To compactify it we add points at in�nity (named cusps):

Γ(1) acts naturally on P1(Q) and we put XΓ = (Γ\h) ∪ (Γ\P1(Q)). This way it becomes a

connected Riemann surface called modular curve. We let X(N) = XΓ(N), X0(N) = XΓ0(N),

Y (N) = YΓ(N) and Y0(N) = XΓ0(N).

If Γ′ ⊂ Γ ⊂ Γ(1), there is a natural projection from XΓ′ → XΓ, which allows us to compute

the genus of the modular curve using the covering (the function j is in fact the j-invariant of

the elliptic curve C/(Z + zZ)):

XΓ
// XΓ(1)

∼
j
// P1(C)

via the Hurwitz formula. For instance,

gX(N) = 1 +
(N − 6)[Γ(1) : Γ(N)]

12N
.
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It can be shown that Y (1) classi�es isomorphism classes of complex elliptic curves and that

Y0(N) classi�es pairs (E,CN ), E being a complex elliptic curve and CN being a cyclic sub-

group of E of order N.

Now, to construct towers of curves de�ned over �nite �elds, we need to take reductions of

our modular curves modulo primes. If S is a scheme and E → S is an elliptic curve, the set

of sections E(S) is an abelian group. Let EN (S) denote the points of order dividing N in

E(S). We call a level N structure an isomorphism αN : EN (S) → (Z/NZ)2. One can prove

that there exists a smooth a�ne scheme Y (N) over SpecZ[1/N ] classifying the isomorphism

classes of pairs (E,αN ) consisting of an elliptic curve E/SpecZ[1/N ] together with a level N

structure αN on E. One can prove that this curve is a model of Y (N) over SpecZ[ζN , 1/N ],

where ζN is a primitive N th-root of 1. There is also a model of Y0(N) over SpecZ[1/N ] and

this �coarse� moduli space classi�es pairs consisting of an elliptic curve together with a cyclic

subgroup of order N. Models for X(N) and X0(N) can also be obtained in such a way that

they become compatible with those for Y (N) and Y0(N). These curves have good reduction

over any prime ideal not dividing N. Moreover, the curve X0(N) can be de�ned over Q and

has good reduction at any prime number not dividing N. Let p be such prime. We denote

by C0,N the curve over Fp2 obtained by reduction of X0(N) mod p. The curve X(N) can

be de�ned over the quadratic sub�eld of Q(ζN ) and has good reduction at all the primes

not dividing N. Let CN be the reduction of X(N) at a prime, i. e. a curve over Fp2 . One
can see that the genus of X0(N) and of X(N) is preserved under reduction. The points

of these curves corresponding to supersingular elliptic curves are Fp2-rational and there are
[Γ(1) : Γ(N)]

12
(p− 1) of them on CN . This leads to the following theorem:

Theorem 4.1. � (Ihara, Tsfasman�Vl duµ�Zink) Let ` be a prime number not equal to p.

The families {C`n} and {C0,`n} satisfy φp2 = p− 1 and therefore are asymptotically optimal.

Note that the result for C0,`n can be deduced immediately from the corresponding result for

C`n .

4.1.2. Shimura modular curves. � Similar results on Shimura curves allow us to construct

directly asymptotically optimal families over Fr with r = q2 = p2m, p prime. To do so,

following Ihara, we start with a p-adic �eld kp with N(p) = q = pm. Let Γ be a torsion-free

discrete subgroup of G = PSL2(R)× PSL2(kp) with compact quotient and dense projection

to each of the two components of G (such Γ's exist). Ihara proved the following results that

relate the construction of optimal curves to (anabelian) class �eld theory, and therefore are

of great interest for us:

Theorem 4.2. � (Ihara [Iha08]) To any subgroup Γ of G with the above properties one can

associate a complete smooth geometrically irreducible curve X over Fr of genus ≥ 2, together

with a set Σ consisting of (q− 1)(g− 1) Fr-rational points of X such that there is a canonical

isomorphism (up to conjugacy) from the pro�nite completion of Γ to Gal(KΣ/K) where KΣ
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denotes the maximal unrami�ed Galois extension of the function �eld K of X in which all the

places corresponding to the points of Σ are completely split.

An easy computation leads to the following result:

Corollary 4.3. � For any square prime power r, there is a tower of curves de�ned over Fr
with φr =

√
r − 1.

In fact, the elliptic modular curves X(N) that we constructed in the previous section corre-

spond to Γ = PSL2(Z[1/p]) and its principal congruence subgroups of level N.

4.1.3. Drinfeld modular curves. � The applicability of Drinfeld modular curves to the prob-

lem of construction of optimal curves has been known since late 80's. The results we are going

to discuss next can be found in [TV92].

Let L be a �eld of characteristic p and let L{τ} denote the ring of non-commutative polyno-

mials in τ, consisting of expressions of the form
n∑
i=0

aiτ
i, ai ∈ L, with multiplication satisfying

τ · a = ap · τ for any a ∈ L. Let A = Fr[T ].

A Drinfeld module is an Fr-homomorphism φ : A→ L{τ}, a 7→ φa satisfying a few technical

conditions. Let γ be the map γ : A → L sending a ∈ A to the term of φa of degree zero.

Notice that φ is determined by φT and γ by γ(T ).We consider only Drinfeld modules of rank

2 that is we assume that φT is a polynomial in τ of degree 2 and we put φT = γ(T )+gτ+∆τ2

(∆ 6= 0). More generally, one can de�ne Drinfeld modules over any A-scheme S.

Just as in the classical case, given a proper ideal I of A, one can de�ne a level I structure

on φ. There is an a�ne scheme M(I) of �nite type over A that parametrizes pairs (φ, λ),

where φ is a Drinfeld module over S and λ is a level I structure. The scheme M(I) has a

canonical compacti�cation: there exists a unique scheme M(I) containing M(I) as an open

dense subscheme, whose �bres over SpecA[I−1] are smooth complete curves. The group

GL2(A/I) acts naturally on M(I) by operating on the structures of level I and this action

extends to M(I).

From now on, let I be a prime ideal generated by a polynomial of degree m prime to q − 1.

Now, consider the smooth complete (reducible) curve X(I) = M(I) ⊗A Fq over Fq. Note
that the A-algebra structure on Fq is obtained through the reduction mod T. Consider the

subgroup

Γ0(I) =

{(
a b

c d

)
∈ GL2(A) | c ∈ I

}
and let Γ0(I) be the image of this subgroup in GL2(A/I). Finally, we consider the smooth

complete absolutely irreducible curve X0(I) = X(I)/Γ0(I). The image of M(I) −M(I) in

X0(I) consists of two Fq-rational points. Moreover, the following result holds.

Theorem 4.4. � The family {X0(I)}, where I is a prime ideal of A generated by a poly-

nomial of degree prime to q − 1, is an asymptotically exact family of curves de�ned over Fq,
satisfying φq2 = q − 1 and thus is optimal.
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Moreover, N. Elkies proved in [Elk] that the family of curves Ẋ0(Tn) which parametrizes

normalized Drinfeld modules (γ(T ) = 1,∆ = −1) with a level Tn structure is asymptotically

optimal. He also related it to the explicit towers of Garcia and Stichtenoth discussed in the

next subsection.

4.2. Explicit towers. � In the last �fteen years, Garcia, Stichtenoth and many others

managed to construct asymptotically good towers explicitely in a recursive way. Their in-

terest comes from coding theory for such towers provide asymptotically good codes via the

construction of Goppa. Let us give an example of such explicit towers.

Theorem 4.5. � (Garcia�Stichtenoth) Let r = q2 be a prime power. The tower {Fn} de�ned
recursively starting from the rational function �eld F0 = Fr(x0) using the relations Fn+1 =

Fn(xn+1), where

xqn+1 + xn+1 =
xqn

xq−1
n + 1

,

satis�es φr =
√
r − 1 and thus is optimal.

If the cardinality of the ground �eld is not a square no towers with φr =
√
r − 1 are known.

However, there exist optimal towers in the sense that they have zero de�ciency. Such towers

can be constructed starting from an explicit tower over a bigger �eld using a descent argument

(see Ballet�Rolland [BR] for the details) or using modular towers.

Let us now say a word about Elkies modularity conjecture. Elkies' work shows that most of

the recursive examples of Garcia and Stichtenoth can be obtained by �nding equations for

suitable modular towers. This made him formulate the following conjecture:

Conjecture 4.6 (Elkies). � Any asymptotically optimal tower is modular.

Finally, let us note that there are other interesting constructions leading to explicit asymptot-

ically good towers of function �elds. As an example we mention the paper [BB] by P. Beelen

and I. Bouw who use Fuchsian di�erential equations to produce optimal towers over Fq2 .

4.3. Class�eld towers. � As it was said in section 2, tamely rami�ed in�nite extensions of

global �elds with �nitely many rami�ed places and with completely split places give examples

of asymptotically good towers. Given a global �eld K, it is natural to consider the maximal

extension of K unrami�ed outside a �nite set of places S, in which places from a set T are

completely split. But these extensions are very hard to understand. The maximal `-extensions

are much easier to handle. These extensions are the limits of the `-S-T -class �eld towers of

K.

For a global �eld K, two sets of �nite places S and T (T 6= ∅(FF )) of K, and a prime number

`, consider the maximal abelian `-extension HT
S,`(K) of K, unrami�ed outside S and in which

the places from T are split (in the case of function �elds the assumption on T to be non-empty

is made in order to avoid in�nite constant �eld extensions). Consider the tower recursively

constructed as follows: K0 = K, Ki+1 = HT
S,`(Ki). All the extensions Ki/K are Galois,

Publications mathématiques de Besançon - 2011



64 Asymptotic methods in number theory and algebraic geometry

and we denote by GTS (K, `) the Galois group Gal(
⋃
i
Ki,K). A su�cient condition for this

tower to be in�nite is given by the Golod�Shafarevich theorem: if G is a �nite `-group then

dimF`
H2(G,F`) > 1

4 dimF`
H1(G,F`)2. This allows to construct asymptotically good in�nite

global �elds. The following result is at the base of many constructions of class �eld towers

with prescribed properties:

Theorem 4.7. � [Tsfasman�Vl duµ [TV02] (NF), Serre [Ser85] , Niederreiter�Xing [NX]

(FF)] Let K/k be a cyclic extension of global �elds of degree `. Let T (k) be a �nite set of non

archimedean places of k and let T (K) be the set of places above T (k) in K. Suppose in the

function �eld case that GCD{`,deg p, p ∈ T (K)} = 1. Let Q be the rami�cation locus of K/k.

Let

(FF ) C(T,K/k) =#T (k) + 2 + δ` + 2
√

#T (K) + δ`,

(NF ) C(T,K/k) =#T (K)− t0 + r1 + r2 + δ` + 2− ρ+

2
√

#T (K) + `(r1 + r2 − ρ/2) + δ`,

where δ` = 1 if K contains the `-root of unity, and 0 otherwise, t0 is the number of principal

ideals in T (k), r1 = ΦR(K), r2 = ΦC(K) and ρ is the number of real places of k which

become complex in K. Suppose that #Q ≥ C(T,K/k). Then K admits an in�nite unram�ed

`-T (K)-class �eld tower.

One can construct such cyclic extension using the Grunwald-Wang theorem (and sometimes

even explicitly by hand) and deduce the following result:

Corollary 4.8 (Lebacque). � Let n be an integer and let t1, ..., tn be prime powers (NF)

(powers of p (FF)). There exists an in�nite global �eld (both in the number �eld and function

�eld cases) such that φt1 , ..., φtn are all > 0.

Another way to produce asymptotically good in�nite class �eld towers is to use tamely rami�ed

instead of unrami�ed class �eld towers. This is the subject of [HM01] and [HM02].

The question of �nding asymptotically good towers with given Tsfasman�Vl duµ invariants

equal to zero is more di�cult. A related question is to �nd out whether an in�nite global

extension realizes the maximal local extension at a given prime. Using results of J. Labute

[Lab] and A. Schmidt [Sch], the following theorem is proven:

Theorem 4.9 (Lebacque [Leb09]). � Let P = {p1, . . . , pn} ⊂ Plf (Q). Assume that for

any i = 1, . . . , n we have ni distinct positive integers di,1, . . . , di,ni . Let I ⊂ Plf (Q) be a �nite

set of �nite places of Q such that I ∩ P = ∅. There exists an in�nite global �eld K such that:

1. I ∩ Supp(K) = ∅,

2. For any i = 1, . . . , n, and any j = 1, . . . , ni, φ
pi,Np

di,j
i

= φ∞
nidi,j

> 0.

3. One can explicitly estimate φ∞ and the de�ciency in terms of P, I, ni and dij .
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The φp,q are invariants generalizing the classical φq : they count the asymptotic number of

primes of norm q above a given prime p (see [Leb10] for a de�nition). In the case of Q they

coincide with the classical ones. This extension is obtained as the compositum of a �nite

extension of Q with prescribed positive Φ
pi,Npi

di,j > 0 and an in�nite class �eld tower QPS (`)

satisfying the K(π, 1) property of A. Schmidt.

4.4. Bounds on the de�ciency. � We have already seen that, using towers of modular

curves, one can produce in�nite function �elds over Fr with zero de�ciency. If r is a square,

there are even towers with φr =
√
r−1. In the case of number �elds no zero de�ciency in�nite

number �elds are known. In fact we doubt that the class �eld theory (which is for now the

only method to produce asymptotically good in�nite number �elds) can ever give such �eld.

Let us quote here the example with the smallest known de�ciency due to F. Hajir and Ch.

Maire [HM02].

Let k = Q(ξ), where ξ is a root of f(x) = x6 + x4 − 4x3 − 7x2 − x+ 1. Consider the element

η = −671ξ5 + 467ξ4 − 994ξ3 + 3360ξ2 + 2314ξ − 961 ∈ Ok. Let K = k(
√
η). F. Hajir and Ch.

Maire prove using a Golod�Shafarevich like result that K admits an in�nite tamely rami�ed

tower satisfying δ ≤ 0.137 . . . .

5. Higher dimensional theory

In this section we will mostly consider the function �eld case since most of the results we

are going to mention are unavailable in the number �eld case. However, we will give some

references to the number �eld case as well.

5.1. Number of points on higher dimensional varieties. � The question about the

maximal number of points on curves over �nite �elds has been extensively studied by numerous

authors. The analogous question for higher dimensional varieties has received comparatively

little attention most probably due to its being signi�cantly more di�cult.

As for the curves, we have the so-called Weil bound which is in this case a famous theorem

of Deligne. Similarly, this bound is not optimal and the general framework for improving it

is provided by the explicit formulae. In the case of curves over Fr Oesterlé managed to �nd

the best bounds available through the techniques of explicit formulae for any given r 6= 2 (see

[Ser85]). A decade later the case of arbitrary varieties over �nite �elds was treated by G.

Lachaud and M. A. Tsfasman in [Tsf95] and [LT]. Let us reproduce here the main results

from [LT]. To do so we will have to introduce some notation concerning varieties over �nite

�elds.

Let X be a non-singular absolutely irreducible projective variety of dimension d de�ned over

a �nite �eld Fr. We put Xf = X ⊗Fr Fqr and X = X ⊗Fr Fr. Let Φrf = Φrf (X) be the

number of points of X having degree f . Thus, for the number Nf of Frf -points of the variety
Xf we have the formula Nf =

∑
m|f

mΦrm . We denote by bs(X) = dimQl
Hs(X,Ql) the l-adic

Betti numbers of X.
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The family of inequalities proven in [LT] has a doubly positive sequence as a parameter. Let

us introduce the corresponding notation. To a sequence of real numbers v = (vn)n≥0 we

associate the family of power series ψm,v(t) =
∞∑
n=1

vmnt
n. We denote ψv(t) = ψ1,v(t) and

let ρv be the radius of convergence of this power series. A doubly positive sequence v is

such a sequence that 0 ≤ vn ≤ v0 for all n, v0 = 1 and for any z ∈ C, |z| < 1 we have

1 + 2 Reψv(t) ≥ 0.

We will also need the functions Fm,v(k, t) =
∞∑
s=0

(−1)sψm,v(r−kst) =
∞∑
n=1

vmntmn

1+r−mnk , Fv(k, t) =

F1,v(k, t). We let Av(z) = −min
|t|=z

Reψv(t) and denote I(k) = {i | 1 ≤ i ≤ 2d − 1, i 6= k, i 6=

2d− k} the set of indices. We have the following inequalities:

Theorem 5.1 (Lachaud�Tsfasman). � For any odd integer k, 1 ≤ k ≤ d, any doubly

positive sequence v = (vn)n≥0 with ρv > qk/2 and any M ≥ 1 we have

M∑
m=1

mΦrm(X)ψm,v(r−(2d−k)/2) ≤ ψv(r−(2d−k)/2) + ψv(rk/2) +
bk
2

+

+
∑

i odd,i 6=k
biAv(r−(i−k)/2) +

∑
i even

biψv(r−(i−k)/2),

and

M∑
m=1

mΦrm(X)Fm,v(d− k, r−(2d−k)/2) ≤ Fv(d− k, r−(2d−k)/2) + Fv(d− k, rk/2)+

+
bk
2

+
∑
i∈I(k)

biFv(d− k, r−(i−k)/2).

For example, taking the second inequality with ψv(t) = t
2 we get the classical Weil bound,

taking the �rst one with ψv(t) = t
1−t we get (asymptotically) a direct generalization of the

Drinfeld�Vl duµ bounds. These inequalities are not straightforward to apply. We refer the

reader to [LT] for more details on how to make good choices of the doubly positive sequence.

Unfortunately, in the case of dimension d ≥ 2 the optimal choice of v is unknown.

The asymptotic versions of these inequalities can be easily deduced from theorem 5.1 once

one introduces proper de�nitions. For a variety X let b(X) = max
i=0,...,d

bi(X) be the maximum

of its l-adic Betti numbers.

De�nition 5.2. � A family of varieties {Xj} is called asymptotically exact if the limits

φrf = lim
j→∞

Φ
rf

(Xj)

b(Xj) and βi = lim
j→∞

bi(Xj)
b(Xj) exist. It is asymptotically good if at least one of φrf

is di�erent from zero.

We can state the following corollary of theorem 5.1:
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Corollary 5.3. � In the notation of theorem 5.1 for an asymptotically exact family of vari-

eties one has

M∑
m=1

mφrmψm,v(r−(2d−k)/2) ≤ βk
2

+
∑

i odd,i 6=k
βiAv(r−(i−k)/2) +

∑
i even

βiψv(r−(i−k)/2),

and
M∑
m=1

mφrmFm,v(d− k, r−(2d−k)/2) ≤ βk
2

+
∑
i∈I(k)

βiFv(d− k, r−(i−k)/2).

Taking particular examples of the sequence v one gets more tractable inequalities (see [LT]).

5.2. Brauer�Siegel type conjectures for abelian varieties over �nite �elds. � One

can ask about the possibility of extending the Brauer�Siegel theorem to the case of varieties

over �nite �elds. The question is not as easy as it might seem. First, mimicking the proof of

theorem 3.4 one gets a result about the asymptotic behaviour of the residues of zeta functions

of varieties at s = d (see [Zyk09]). Such a result would be interesting if there was a reasonable

interpretation for this residue in terms of geometric invariants of our variety.

Two other approaches were suggested by B. Kunyavskii and M. Tsfasman and by M. Hindry

and A. Pacheco. Both of them have for their starting points the Birch and Swinnerton-Dyer

(BSD) conjecture which expresses the value at s = 1 of the L-function of an abelian variety in

terms of certain arithmetic invariants related to this variety. However, the situation with the

asymptotic behaviour of this special value of the L-functions is much less clear than before.

Let us begin with the approach of Kunyavskii and Tsfasman.

Let K/Fr be a function �eld and let A/K be an abelian variety over K. We denote by

XA := |X(A/K)| the order of the Shafarevich�Tate group of A, and by RegA the determinant

of the Mordell�Weil lattice of A (see [HP] for de�nitions). Note that in a certain sense XA

and RegA are the analogues of the class number and of the regulator respectively. Kunyavskii

and Tsfasman make the following conjecture concerning families of constant abelian varieties

(see [KT]):

Conjecture 5.4. � Let A0 be a �xed abelian variety over Fr. Take an asymptotically exact

family of function �eds K = {Ki} and put Ai = A0 ×Fr Ki. Then

lim
i→∞

logr(Xi · Regi)

gi
= 1−

∞∑
m=1

φrm(K) logr
|A0(Frm)|

rm
.

This conjecture is actually stated as theorem in [KT]. Unfortunately the change of limits in

the proof given in [KT] is not justi�ed thus the proof can not be considered a valid one. In

fact the �aw looks very di�cult to repair as the statement of the theorem can be reduced

(via a formula due to J. Milne, which gives the BSD conjecture in this case) to an equality

of the type lim
i→∞

log ζKi
(s)

gKi
= log ζK(s) at a given point s ∈ C with Re s = 1

2 (in fact s belongs

Publications mathématiques de Besançon - 2011



68 Asymptotic methods in number theory and algebraic geometry

to a �nite set of points depending on A0). As we have already mentioned in the discussion

following theorem 3.10 this question does not look accessible at the moment.

Let us turn our attention to the approach of Hindry and Pacheco. They treat the case in some

sense �orthogonal� to that of Kunyavskii and Tsfasman. Here is the conjecture they make in

[HP]:

Conjecture 5.5. � Consider the family {Ai} of non-constant abelian varieties of �xed di-

mension over the �xed function �eld K. We have

lim
i→∞

log(Xi · Regi)

logH(Ai)
= 1,

where H(Ai) is the exponential height of Ai.

Using deep arguments from the theory of abelian varieties over function �elds the conjecture is

reduced in [HP] to the one on zeroes of L-functions of abelian varieties together with the BSD

conjecture. Hindry and Pacheco are actually faced with the problem of the type discussed

after theorem 3.10, this time for abelian varieties over function �elds.

The following example serves as the evidence for the last conjecture (see [HP]):

Theorem 5.6 (Hindry�Pacheco). � For the family of elliptic curves Ed over Fr(t), where
the characteristic of Fr is not equal to 2 or 3, de�ned by the equations y2 +xy = x3− td, d ≥ 1

and prime to r, the Tate�Shafarevich group X(Ed/K) is �nite and

log(Xd · Regd) ∼ logH(Ed) ∼
d log r

6
.

The proof of this theorem uses a deep result of Ulmer [Ulm02] who established the BSD con-

jecture in this case and explicitly computed the L-functions of Ed. This reduces the statement

of the theorem to a an explicit (though highly non-trivial) estimate involving Jacobi sums.

The conjectures 5.4 and 5.5 can be united (though not proved) within the general asymptotic

theory of L-functions over function �elds. Such a theory also explains why we get 1 as a limit

in the second conjecture and a complicated expression in the �rst one. We will sketch some

aspects of the theory in the next subsection.

The analogous problem in the number �eld case has also been considered [Hin]. Unfortunately

in the number �eld case we do not have a single example supporting the conjecture.

5.3. Asymptotic theory of zeta and L-functions over �nite �elds. � The proofs of

the results from this subsection as well as lengthy discussions can be found in [Zyk11]. Let

us �rst de�ne axiomatically the class of functions we are going to work with. This resembles

the so called Selberg class from the analytic number theory, but, of course the case of function

�elds is in�nitely easier from the analytic point of view, all functions being rational (or even

polynomial).

De�nition 5.7. � An L-function L(s) over a �nite �eld Fr is a holomorphic function in s

such that for u = q−s the function L(u) = L(s) is a polynomial with real coe�cients, L(0) = 1
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and all the roots of L(u) are on the circle of radius r−
d
2 for some non-negative integer number

d which is called the weight of the L-function. We say that the degree of the polynomial L(u)

is the degree of the corresponding L-function. A zeta function ζ(s) is a product of L-functions

in powers ±1 :

ζ(s) =
d∏

k=0

Lk(s)
wk ,

where wk ∈ {−1, 1} and Lk(s) is an L-function of weight k.

Both zeta-functions of smooth projective curves or even varieties over �nite �elds and L-

functions of elliptic surfaces considered in the previous sections are covered by this de�nition.

For the logarithm of a zeta function we have the Dirichlet series expansion:

log ζ(s) =
∞∑
f=1

Λf
f
r−fs

which is convergent for Re s > d
2 . In the case of a variety X/Fr we have a simple interpretation

for the coe�cients Λf = |X(Frf )| as the number of points on X over the degree f extension

of Fr.
We are going to work with zeta and L-functions asymptotically, so we have to introduce the

notion of a family. We will call a sequence {ζk(s)}k=1...∞ =

{
d∏
i=0

Lki(s)
wi

}
k=1...∞

of zeta

functions a family if the total degree gk =
d∑
i=0

gki tends to in�nity and d remains constant.

Here gki are the degrees of the individual L-functions Lki(s) in ζk(s).

De�nition 5.8. � A family {ζk(s)}k=1...∞ of zeta-functions is called asymptotically exact

if the limits

γi = lim
k→∞

gki
gk

and λf = lim
k→∞

Λkf
gk

exist for each i = 0, . . . , d and each f ∈ Z, f ≥ 1. The family is called asymptotically bad if

λf = 0 for any f and asymptotically good otherwise.

In the case of curves over �nite �elds the denominators of zeta functions are negligible from

the asymptotic point of view. In general we give the following de�nition:

De�nition 5.9. � Let {ζk(s)} be an asymptotically exact family of zeta functions. De�ne

the set I ⊂ {0 . . . d} by the condition i ∈ I if and only if γi = 0.We de�ne ζn,k(s) =
∏
i∈I

Lki(s)
wi

the negligible part of ζk(s) and ζe,k(s) =
∏

i∈{0,...,d}\I
Lki(s)

wi the essential part of ζk(s). De�ne

also de = max{i | i /∈ I}.
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De�nition 5.10. � We say that an asymptotically exact family of zeta or L-functions is

asymptotically very exact if the series
∞∑
f=1

|λf |q−
fde
2

is convergent.

In the case of curves or varieties the positivity of Λf automatically implies the fact that

the corresponding family is asymptotically very exact. This is of course false in general (an

obvious example of a family which is asymptotically exact but not very exact is given by

Lk(s) = (1− q−s)k). In general most of the results are proven for asymptotically very exact

families and not just for asymptotically exact ones.

We have already noted that the concept of limit zeta functions is of utmost importance in the

asymptotic theory.

De�nition 5.11. � Let {ζk(s)} be an asymptotically exact family of zeta functions. Then

the corresponding limit zeta function is de�ned as

ζlim(s) = exp

 ∞∑
f=1

λf
f
q−fs

 .

Now, we can state the generalizations of most of the results concerning zeta and L-functions

over �nite �elds, given in the previous sections. Let us begin with the basic inequalities. In

fact, one should be able to write most of the inequalities from subsection 5.1 in this more

general setting. We give only the simplest statement of this type here:

Theorem 5.12. � Let {ζk(s)} be an asymptotically very exact family of zeta functions. Then

wde

∞∑
j=1

λjq
− dej

2 ≤
de∑
i=0

γi

q(de−i)/2 + wi
.

The Brauer�Siegel type results can also be proven in this setting. The following theorem

includes all the function �eld versions of the Brauer�Siegel type results from section 3 except

for the explicit ones (which can also be, in principle, established for general zeta and L-

functions).

Theorem 5.13. � 1. For any asymptotically exact family of zeta functions {ζk(s)} and

any s with Re s > de
2 we have

lim
k→∞

log ζe,k(s)

gk
= log ζlim(s).

If, moreover, 2 Re s 6∈ Z, then

lim
k→∞

log ζk(s)

gk
= log ζlim(s).

The convergence is uniform in any domain de
2 + ε < Re s < de+1

2 − ε, ε ∈
(
0, 1

2

)
.
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2. If {ζk(s)} is an asymptotically very exact family with wde = 1 we have:

lim
k→∞

log |ck|
gk

≤ log ζlim

(
de
2

)
,

where rk and ck are de�ned using the Taylor series expansion ζk(s) = ck
(
s− de

2

)rk +

O
((
s− de

2

)rk+1
)
.

In the case of arbitrary L-functions the equality in (2) does not hold in general. This means

that the similar questions previously discussed for function �elds or elliptic curves over func-

tion �elds are indeed of arithmetic nature.

Finally we will state a result on the distribution of zeroes. Let L(s) be an L-function and

let ρ1, . . . , ρg be the zeroes of the corresponding polynomial L(u). De�ne θk ∈ (−π, π] by

ρk = q−d/2eiθk . One can associate the measure ∆L = 1
g

g∑
k=1

δθk to L(s).

Theorem 5.14. � Let {Lj(s)} be an asymptotically very exact family of L-functions. Then

the limit distribution lim
j→∞

∆j exists and has a nonnegative continuous density function given

by an absolutely and uniformly convergent series 1− 2
∞∑
k=1

λk cos(kx)q−
dk
2 .

In the case of families of elliptic curves over Fr(t) P. Michel provides in [Mic] an explicit

estimate for the discrepancy in the equidistribution of zeroes and a much more precise estimate

for it on average.

A number of open questions concerning asymptotic properties of zeta and L-functions can be

found in the last section of [Zyk11]. It seems that an analogue of this general asymptotic

theory can be developed in the number �eld case (at least assuming some plausible conjectures

like GRH or the Ramanujan�Peterson conjecture). This is yet to be done.
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